
DHCPv6 for Data Centers

Felix Hamme

August 31, 2020

Bachelorarbeit

für die Prüfung zum Bachelor of Science

im Studiengang angewandte Informatik

an der Dualen Hochschule Baden-Württemberg Karlsruhe

bei der United Internet AG

zum Abgabedatum 31. August 2020

student Felix Hamme

created during June 2020 to August 2020

company United Internet Sourcing & Apprenticeship GmbH

university Baden-Württemberg Cooperative State University Karlsruhe

license of this work Creative Commons Attribution 4.0 International License

ii

https://creativecommons.org/licenses/by/4.0/

�Every networking problem always takes longer to solve than it seems like it should.�

fundamental networking truth number 9a, RFC1925 [1]

iii

Abstract

The IPv4 address exhaustion is the main motivation to migrate from IPv4 to the successor protocol IPv6.

Like with IPv4, computers need to be supplied with addresses and con�guration information about the

network, to be able to communicate using IPv6.

The United Internet AG operates multiple data centers with a �ve digit number of servers, which all

need to be supplied with the aforementioned information. The infrastructure to do that needs to be fast

enough, highly available and extensible.

This bachelor thesis studies how available con�guration mechanisms for IPv6 nodes (particularly

SLAAC and DHCPv6) work. Several scenarios are analyzed in which multiple redundant stateful

DHCPv6 servers that perform dynamic DNS updates can produce inconsistent information about the

addresses in the network. A list of open source DHCPv6 server implementations is compiled. The

existing DHCPv4 infrastructure of the United Internet AG is explained and a new infrastructure for

con�guring IPv6 nodes is proposed.

Zusammenfassung

Die IPv4-Adress-Knappheit ist der wichtigste Grund für eine Migration von IPv4 zum Nachfolger-

Protokoll IPv6. Wie bei IPv4, müssen Computer mit Adressen und Kon�gurations-Informationen be-

züglich des Netzwerks ausgestattet werden, damit sie mittels IPv6 kommunizieren können.

Die United Internet AG betreibt mehrere Rechenzentren mit einer fünfstelligen Anzahl an Servern, die

alle mit den zuvor genannten Informationen versorgt werden müssen. Die Infrastruktur zum Kon�gurieren

dieser Informationen muss schnell genug, hochverfügbar, und erweiterbar sein.

Diese Bachelorarbeit untersucht, wie Kon�gurations-Mechanismen für IPv6-Knoten (insbesondere

SLAAC und DHCPv6) funktionieren. Verschiedene Szenarien werden analysiert, in denen mehrere red-

undante, zustandsbehaftete DHCPv6-Server, die dynamische DNS-Updates machen, inkonsistente In-

formationen über die Adressen im Netzwerk produzieren können. Eine Liste mit Open-Source Imple-

mentationen von DHCPv6-Servern wird zusammengestellt. Die existierende DHCPv4-Infrastruktur der

United Internet AG wird erklärt, und eine neue Infrastruktur zum Kon�gurieren von IPv6-Knoten wird

vorgeschlagen.

iv

Contents

1 Introduction . 1

1.1 Practical Usecases Considered by This Thesis . 1

1.1.1 PXE-DHCP . 1

1.1.2 RMC-DHCP . 2

1.2 The Scope and Aim of This Thesis . 2

2 Background: How the Internet Works . 4

2.1 Layer 1 and 2: Ethernet . 4

2.2 Layer 3: IPv4 . 5

2.2.1 Mapping IPv4 Addresses to Link-Layer Addresses 6

2.2.2 Predecessors of DHCPv4 . 6

2.2.3 DCHPv4 . 7

2.3 Layer 3: IPv6 . 8

2.3.1 Addresses and Pre�xes . 8

2.3.2 Address Scopes . 9

2.3.3 Delivery Schemes: {Uni,Any,Multi,Broad}cast 9

2.4 Layer 3: ICMPv6 . 10

2.4.1 Neighbor Discovery Protocol (ND) . 10

2.4.2 Multicast Listener Discovery (MLD) . 12

2.5 Layer 4: UDP . 13

2.6 Overview of Con�guration Mechanisms for IP Nodes 14

2.6.1 Separation of Concerns in IPv6 . 15

2.7 Stateless Address Auto Con�guration (SLAAC) 15

2.7.1 Generation of Link-Local Addresses . 16

2.7.2 Generation of Global Addresses . 18

2.7.3 DNS Con�guration . 18

2.8 DHCPv6 . 19

2.8.1 Relay Agents . 19

2.8.2 Client Identi�cation and the Relationship Between IPv6 Addresses and

Link-Layer Addresses . 21

2.8.3 DHCPv6 Messages . 22

2.8.4 Retransmission of DHCPv6 Messages . 22

2.8.5 Stateless vs Stateful DHCPv6 . 25

2.8.6 Stateless DHCPv6 . 25

2.8.7 Stateful DHCPv6 . 25

2.8.8 Server-Triggered Client Recon�guration 31

2.9 Redundant Service Instances . 31

2.9.1 High Availability . 31

2.9.2 Loadbalancing . 31

2.9.3 Anycast Using BGP . 32

2.9.4 IPv6 Link-Scope Anycast . 33

v

3 Evaluation of a Migration to IPv6-only . 34

3.1 The Problem: IPv4 Address Exhaustion . 34

3.1.1 Mitigation: Network Address Translation (NAT) 34

3.1.2 Service Di�erentiation on Upper Layer Protocols 35

3.2 Connecting IPv6 Nodes With IPv4 Nodes . 37

3.3 What IPv6 Does Di�erently Than IPv4 . 38

3.3.1 Solving the Address Exhaustion . 38

3.3.2 Abolishing NAT . 39

3.3.3 Other Improvements . 39

3.3.4 Conclusions . 40

4 Stateful DHCPv6 and Redundancy Issues . 41

4.1 Knowing That an Address Is Assigned . 41

4.2 Di�culties When Altering DNS Records . 41

4.2.1 DHCID RR . 44

4.2.2 Conclusions . 45

4.3 Di�culties When Querying DNS Records (Caching) 45

4.3.1 Record-Changing Events . 45

4.3.2 Practical Relevance of RELEASE Messages 46

4.3.3 DNS TTL recommendation . 46

4.4 Issues With Failovers and Synchronization . 47

4.4.1 Too Much Redundancy . 48

4.4.2 Refusing Client Messages . 48

4.4.3 Conclusions . 49

5 DHCPv6 Server Implementations Running on Linux 50

5.1 Criteria for Selecting Implementations . 50

5.2 Open Source DHCPv6 Servers Running on Linux 50

6 Con�guration Service Architecture Evaluation . 54

6.1 Current DHCPv4 Architecture . 54

6.1.1 Management Service . 54

6.1.2 DHCP Server Con�guration . 54

6.2 Related Work . 56

6.2.1 DHCPv6 Deployment at Facebook . 56

6.2.2 ISC High Availability Considerations . 58

6.3 Recommended Con�guration Mechanism Architecture 59

6.3.1 Con�guration Mechanism for PXE-DHCP Nodes 60

6.3.2 Con�guration Mechanism for RMC-DHCP Nodes 60

6.3.3 Routers and Relay Agents per Link . 60

6.3.4 State Synchronization and Message Distribution 61

6.3.5 Monitoring . 61

7 Results, Discussion and Future Work . 63

7.1 Scope and Requirements . 63

7.2 Bene�ts of Migrating to IPv6 . 63

vi

7.3 Con�guration Mechanisms for IPv6 Nodes . 64

7.4 Resilient Stateless Con�guration . 64

7.5 Redundant Stateful DHCPv6 Servers . 64

7.6 Results of the DHCPv6 Server Implementation Evaluation 65

7.7 The Proposed Service Architecture . 65

7.8 Discussion of Methodology And Future Work . 65

7.8.1 Theory and Practice . 65

7.8.2 Performance . 65

7.8.3 Security . 66

7.8.4 More Literature . 66

7.8.5 Economics . 66

7.8.6 Consistency . 66

vii

1 Introduction

The internet is a big thing. Figuratively and literally, as it is used by over 4.1 billion people in

the world [2] and connects even more computers. It continues to grow.

But what is �the internet�? It makes exchanging data between many computers possible,

via so-called networks. The International Data Corporation wrote this explanation [3]: �The

global Internet is an amalgam of separate, but semiautonomous networks. Each network and

server provider is an independent entity with its own policies, services, and customer targets.

The binding element of the global Internet is that networks share a common IP addressing and

global BGP routing framework that allows all networks to interconnect with each other directly

or indirectly.� All participants agree upon using a standard called Internet Protocol (IP) for

exchanging data. Every possible target and source of data tra�c needs an address, in order to

track where the data is from and where it is meant to go.

The IP is standardized in the versions IPv4 [4] and IPv6 [5].1 The former uses an address

space of 32 bits, which allows to form about 4.3 billion distinct addresses. The amount of 'usable'

addresses is fewer than that, due to reservations for special purposes [7]. Held against the 4.1

billion internet users, it is obvious that not everybody can get a unique address. Despite some

workarounds, this is a serious problem and has been labeled 'IPv4 Address Exhaustion'. This

problem is elaborated in section 3.1.

The United Internet AG operates a �ve digit number of computers in multiple data centers.

This work analyzes how those computers are currently supplied with IPv4 addresses and related

con�guration information, and how this could be improved by migrating to the successor pro-

tocol IPv6. The Dynamic Host Con�guration Protocol (DHCP) is a con�guration mechanism

standardized for IPv4 and IPv6 that can provide the addresses and con�guration information

(see [8], [9]). Hence, the title of this work is �DHCPv6 for Data Centers�.

1.1 Practical Usecases Considered by This Thesis

A goal of this work is to investigate mechanisms to con�gure IPv6 nodes. Those nodes may

be divided into two groups, which are described in the following sections. Nodes with other

requirements may be added in the future, but they are out of scope for this work.

1.1.1 PXE-DHCP

This group of nodes is expected to boot over the network using the Preboot Execution Environ-

ment protocol (PXE [10]). Booting over the network means to download an operating system

image from some other node. To reach that other node and the image, the booting node needs

to acquire a usable IP addresses, the address of the node where to download the image from, the

name of the image and usually more information (e.g. addresses of recursive DNS servers).

A network boot begins with a network interface card making a DHCP request. Using the

received information, a small image is fetched over the network and booted. This booted image

1 The version numbers 1, 2, 3 and 5 were used by standardized protocols, which now all have historic status.
The version numbers are still reserved to avoid confusion. (See [6]).

1

1.2 The Scope and Aim of This Thesis

can continue to use the information, especially the IP address obtained previously via DHCP. The

image is usually run to fetch and boot the actually desired, bigger operating system image. This

operating system typically gets its network con�guration independently of the already executed

DHCP message exchange. The operating system can make its own DHCP request, but it could

also use any other con�guration mechanism.

1.1.2 RMC-DHCP

The nodes in this group are mostly remote management controllers (RMCs) of physical servers,

hence the name of this group. They need usable IP addresses and, as the major di�erence to PXE-

DHCP nodes, DNS records that point to that addresses. The DNS records allow administrators

and appropriate software to access the RMCs.

More precisely, each assigned address should get an A- (IPv4) or AAAA-record (IPv6) and a

PTR record to an appropriate FQDN.2 A CNAME record should be added if possible to point to

this FQDN from another FQDN that is formed of the hostname of the con�gured node. Those

records should be available soon after the address got assigned. FQDNs should not point to

the wrong node, to reduce the risk of mistakenly instructing the wrong server (e.g. shutting a

machine down that needs to stay online).

The RMC-DHCP nodes may but usually do not need to use network boot information.

Currently, a DHCPv4 server leases addresses to those RMCs and triggers, using a chain of

company-internally developed software, updates in the authoritative DNS servers.

There is a diversity of manufacturers, models and �rmware versions of RMCs in use. Most

of the RMCs are Dell iDRACs.

There is currently no comprehensive database that keeps track of models and �rmware ver-

sions of the RMCs owned by the company. However, the company uses an internally developed

asset management software, which keeps records of all servers. This includes the server type and

a URL to the RMC.

URLs of iDRACs are formed by including the Dell Service Tag in a well-known FQDN. URLs

of HP iLOs and IBM Integrated Management Modules (IMM) are likewise formed using other

well-known FQDNs. To itemize the number of iDRACs based on their major �rmware version,

the matching server model codes are retrieved from the asset management software. Those codes

indicate the major version of the iDRACs: Gen12 Dell servers have version 7, Gen13 have version

8 and Gen14 and Gen15 have version 9.

To simplify the scope of this work, the group of expected RMCs is reduced to iDRACs of

version 7, 8 and 9.

1.2 The Scope and Aim of This Thesis

The motivation for this work is to improve the con�guration of IP addresses and related con�g-

uration information for the nodes categorized in section 1.1 into PXE-DHCP and RMC-DHCP.

This thesis �rst explains the relevant technologies in section 2.

2 FQDN stands for Fully Quali�ed Domain Name. For this and the DNS record types, see [11].

2

1.2 The Scope and Aim of This Thesis

iDRAC version number of servers

9 5726
8 12478
7 5937

total 24141

Tab. 1: The count of Dell iDRACs by version that are owned by the United Internet AG as of
2020-07-28.

Section 3 evaluates advantages and disadvantages of a migration from IPv4 to IPv6 in general

and with respect to the considered usecases. The migration to networks that use only IPv6 was

expected to be the desirable, which is why the remaining work focuses on how an appropriate

con�guration service architecture can be built.

It was expected that a stateful DHCPv6 server will be necessary. To ful�ll company require-

ments, this service has to be build resilient. Section 4 analyzes what state is maintained by

a stateful DHCPv6 server, what issues might occur if that state is not synchronized across all

server instances and how the state could be synchronized.

Section 5 summarizes the required features of DHCPv6 server implementations. A selection

of DHCPv6 server implementations that run on Linux and could be suitable with respect to the

aforementioned requirements is presented.

Next, the current infrastructure of the United Internet AG is analyzed in section 6. The

requirements get speci�ed further and a service architecture for IPv6 is proposed.

Finally, section 7 summarizes the �ndings, discusses the methodology and recommends future

work.

3

7 Application

6 Presentation

5 Session

4 Transport

3 Network

2 Data Link

1 Physical

Tab. 2: The Internet Protocol is by far not the only standard used for data exchange between
computers. IP is transferred in the payload of a lower layer protocol and has itself a
payload in which it carries higher layer protocols. For each layer, there is a variety
of protocols to choose from. Lower layer protocols should not depend on higher layer
protocols. The layers are standardized by the OSI model [13] and shown here. Examples
for network layer protocols are IPv4 [4] and IPv6 [5]. Examples for transport layer
protocols are UDP [14] and TCP [15].

2 Background: How the Internet Works

This section provides the relevant background on network protocols. Ordered by the OSI model

layers (see table 2), the protocols Ethernet (section 2.1), IPv4 (section 2.2), IPv6 (section 2.3),

ICMPv6 (section 2.4) and UDP (section 2.5) are presented.

Section 2.6 gives an overview of possible con�guration mechanisms for IPv4 and especially

IPv6 nodes. The con�guration mechanisms for IPv6 nodes SLAAC and DHCPv6 are explained

in section 2.7 and section 2.8. Some terms and protocols for operating multiple redundant servers

are introduced in section 2.9.

Unless otherwise mentioned, IPv6 terminology is used (see especially the �Terminology� sec-

tions of [5], [9], [12]).

2.1 Layer 1 and 2: Ethernet

IPv6 sends its messages over so-called links. The IPv6 standard [5] de�nes a link to be �a

communication facility or medium over which nodes can communicate at the link layer, i.e., the

layer immediately below IPv6. Examples are Ethernets [...]�. A link can have any number of

interfaces attached to it. Each interface belongs to a node and has a link-layer address. IPv6

packets are transmitted in the payload of the link-layer protocol of a link, from an interface to

another, each identi�ed by a link-layer address. This terminology is illustrated in �gure 1.

The Institute of Electrical and Electronics Engineers, Inc (IEEE) standardized the network

protocol �Ethernet� [16], which implements the physical and data link OSI model layers (see

table 2). Despite the existence of alternative implementations, this work assumes Ethernet to

be practically the only implementation, to re�ect the considered networks of the United Internet

AG.

The interaction between IPv6 and link-layer implementations is subject to implementation-

dependent standards. RFC2464 [17] describes how IPv6 can be transported over Ethernet.

MAC addresses are a type of link-layer addresses. Every Ethernet network interface has a

unique MAC address. In case of physical network interfaces, those are assigned by the hardware

4

2.2 Layer 3: IPv4

Fig. 1: This example shows how IP nodes (colored boxes) are connected to other nodes (e.g.
DHCP servers). Each interface connects a node to a link and has one link-layer address
and several IP addresses. In each of these examples, the �rst address is an Ethernet, the
second an IPv6 of link-local scope, the third an IPv6 of global scope and the fourth an
IPv4 address. The IP addresses are taken from the address pre�xes that are on-link, which
are listed here below �Link�. The communication between Relay Agent 1 and Server 2 is
abstracted to the layer 4 protocol UDP and could be implemented using one or a chain
of links.

vendor.

Volume �Section One�, section 3.2.3 of the standard [16] de�nes the format of media access

control addresses (MAC addresses) to be 48 bit long. The �rst two bits in canonical bit order

have special meaning. The �rst denotes whether the address refers to a single (value 0) or

multiple (value 1) targets. The second bit indicates whether the address was assigned by a

global authority (value 0).

2.2 Layer 3: IPv4

The Internet Protocol version 4 (IPv4) was standardized 1981 in RFC791 [4]. It implements the

network layer of the OSI model by sending �packets� that consist of a header and a payload to

other nodes. The packets are transmitted in the payload of link-layer protocols, like Ethernet.

IPv4 (like all versions of IP) enables to transmit data between hosts that are not at the same

link, but are connected via a chain of links. So-called routers transfer packets between links and

thereby interconnect the networks, hence the name �Internet�.

The addresses used to de�ne the source and target of an IPv4 packet (�IPv4 address�) are

32 bit long. Its representation in text has not been speci�ed in the IPv4 standard. However,

other documents specify a format. RFC952 [18], which was published about four years after

5

2.2 Layer 3: IPv4

pre�x purpose

0.0.0.0/8 �this host on this network�
10.0.0.0/8 private addresses
127.0.0.0/8 loopback (same host)
169.254.0.0/16 link-local addresses
172.16.0.0/12 private addresses
192.168.0.0/16 private addresses
240.0.0.0/4 multicast addresses

Tab. 3: Some reserved IPv4 pre�xes, see RFC6890 [7]. The listed pre�xes account for 7.45% of
the IPv4 address space.

RFC791 de�nes the format that is common nowadays. The 32 bit are split into four bytes which

are each written in decimal and then joined together using dots (�.�), like such:

01111111 00000000 00000000 00000001

↓
127.0.0.1

(1)

Each network interface can usually be assigned at most one IPv4 address. All those IPv4

addresses at the same link are assigned from the same pre�x. A pre�x is a range of addresses

that start with a common sequence of bits. A pre�x is represented in text by adding as much

zeroes to the bit sequence as needed to from an address, representing that in text, appending a

slash (�/�) and appending the length of the bit sequence (without added zeroes). For example,

10.0.0.0/16 describes addresses from 10.0.0.0 to 10.0.255.255. (See [19]).

The �rst and last IPv4 address of a pre�x at a link can not be assigned to interfaces, because

they are reserved to respectively identify the network and broadcast packets to all nodes at the

link. There are several pre�xes which are reserved for special purposes, some of which are listed

in table 3.

2.2.1 Mapping IPv4 Addresses to Link-Layer Addresses

Whenever an IPv4 packet is sent to a di�erent node, it needs to be encapsulated in the link-layer

protocol payload. This requires to know the link-layer address of the next hop (a node at the

same link, the destination node or a router).

The Address Resolution Protocol (ARP, see RFC826 [20]) can be used to query a link-layer

address using an IPv4 address. It is transmitted in the payload of the link-layer protocol and

can be used for other protocols than IPv4. (IPv6 uses the Neighbor Discovery Protocol instead

of ARP, see section 2.4.1). To �nd out a link-layer address, a node broadcasts (see �gure 2) an

ARP message to all nodes at the link. If a node sees such a message and has the IPv4 address

con�gured on its interface, it replies with a message containing the link-layer address.

2.2.2 Predecessors of DHCPv4

The Reverse Address Resolution Protocol (RARP, see RFC903 [21]) servers, as the name suggests,

the reverse purpose of ARP: It translates link-layer addresses into IPv4 addresses. This can be

6

2.2 Layer 3: IPv4

used by nodes that have no IPv4 address yet and want to �nd out which they can use.

This con�guration mechanism was later obsoleted by the Bootstrap Protocol (BOOTP, see

[22]�[24]). Using the BOOTP, a client can request con�guration from a server. Among IPv4

addresses, the BOOTP can also con�gure arbitrary other information, like router IPv4 addresses

or addresses of recursive DNS nameservers. The Bootstrap Protocol got its name because it

enables nodes to enough information to fetch a �le from another node and use that as boot

image.

Because the BOOTP is transported in the payload of UDP (see section 2.5), which in turn is

(in this case) transported in IPv4, a client initially needs to �ll addresses in IPv4 packet headers

before knowing them. This is solved by using the unspeci�ed address 0.0.0.0 as source and

broadcasting the message to the well-known address 255.255.255.255. The reply to that is

either sent to the new address of the client, or to the mentioned broadcast address. In both

cases, the client needs to receive that message before having an IPv4 address assigned to the

interface.

Because the broadcasts reach only nodes at the same link, the BOOTP introduced �forwarding

agents� which are also known as �relay agents�. Those are placed at the link of the client and

pass the BOOTP messages along between clients and servers.

2.2.3 DCHPv4

The Dynamic Host Con�guration Protocol (DHCP, see RFC2131 [8]), named DHCPv4 here for

disambiguation, is a protocol that provides IPv4 nodes with IPv4 addresses and other con�gu-

ration information. It was designed as a mechanism that eliminates the need for manual and

individual con�guration of clients. DHCPv4 was developed to be interoperable with the BOOTP.

Like BOOTP, DHCPv4 o�ers assignment of IPv4 addresses and other con�guration informa-

tion to clients using servers. A DHCPv4 server can assign addresses to clients permanently or

for a limited time (�lifetime�). The latter is motivated by networks in which addresses are scarce.

BOOTP identi�es clients based on their link-layer address, which is still common practice

with DHCPv4, but the latter introduces an opaque value that can be provided by a client to

identify itself. Nonetheless, DHCPv4 can assign exactly one IPv4 address per link-layer address.

To initially obtain con�guration information, the following four-way message exchange is

used. This needs to be repeated for each interface to which the client wants to assign an address.

The communication prior to assigning an address to a client takes place like with BOOTP as

described above, if needed via a relay agent.

1. The client locates servers by broadcasting a DHCPDISCOVER message to all nodes at the link

using the well-known IPv4 address 255.255.255.255. This broadcast address is used for

all broadcast messages in DHCPv4.

2. Any servers can o�er con�guration information by sending a DHCPOFFER message to the

client. A server ought to probe (e.g. using an ICMPv4 Echo Request message) whether

the address it is o�ering is currently not in use.

7

2.3 Layer 3: IPv6

3. The client selects a server and declines o�ers of the others by broadcasting a DHCPREQUEST

message. The servers know which was selected because the client includes the server's IPv4

address in the message.

4. The server con�rms the con�guration information using a DHCPACK message. If during

the time of the message exchange the server became unable to provide the con�guration

information as written in the DHCPREQUEST message, it refuses that by broadcasting a

DHCPNAK message.

IPv4 has no mechanism to prevent duplicate addresses, so a DHCPv4 server has the responsibility

to ensure the addresses in the network are unique. RFC2131 recommends clients to check the

con�guration information they received. If a client detects at this occasion (e.g. using ARP)

that the address it got assigned is already in use, it must notify the server using a DHCPDECLINE

message and restart the con�guration process.

A client can request to extend the lifetime of an address by �rst renewing and then rebinding.

First, a client attempts to renew its address by unicasting a DHCPREQUEST message to the server

from which it got the address. The server can grant the the lifetime extension by sending a

DHCPACK message to the client. If the server does not reply after some time (perhaps because it

was shut down), the client proceeds to rebinding. When doing so, it broadcasts the DHCPREQUEST

message in the hope that another server can extend the lifetime. This is intended to work

with multiple DHCPv4 servers that synchronize their information about the addresses they have

assigned.

If a client receives no answer to a message, the client retransmits the message. RFC2131

requires an �randomized exponential backo� algorithm� to determine the delay between such

retransmissions, but leaves further details up to the implementation of the client.

A client can use a DHCPRELEASE message to inform a server that it is no longer using an

address and the server may reallocate it. If a client wants no address but other con�guration

information, it can query a server using a DHCPINFORM message.

2.3 Layer 3: IPv6

The Internet Protocol version 6 (IPv6) is de�ned 1998 in RFC2460 [25] which was replaced in

2017 by RFC8200 [5]. It implements the network layer of the OSI model (see table 2), like IPv4.

The following sections describe this protocol and those built upon it. Within this section, IPv6

addresses are described. Much of the behavior of IPv6 nodes is implemented using the ICMPv6

protocol, which is described in section 2.4. The Stateless Address Auto Con�guration is also part

of IPv6 and explained in section 2.7.

2.3.1 Addresses and Pre�xes

An IPv6 address is a 128 bit long number. In text it can be represented in di�erent forms, as

de�ned in RFC4291 [26]:

• In the �preferred form� the IPv6 address is split up into eight 16 bit long �elds which are

written in hexadecimal and joined by colons. Each �eld must have at least one digit,

8

2.3 Layer 3: IPv6

leading zeroes may be omitted.

Example: 2001:db8:0:0:0:1234:c0a8:1

• The �compressed form� is a variation of the preferred form in which consecutive �elds with

the value 0 are abbreviated using a double colon (�::�). To avoid ambiguity, this must be

done no more than once per address.

Example: 2001:db8::1234:c0a8:1

• To ease migration from IPv4, the last two �elds (32 bit) may be written in the syntax of

an IPv4 address:

Example: 2001:db8::1234:192.168.0.1

The examples above all refer to the same address.

An IPv6 pre�x is an IPv6 address together with an integer between 0 and 128. In textual

representation, address and integer are joined by a slash (�/�), e.g.: 2001:db8::/64 (see [26]).

This is similar to the CIDR notation of IPv4 subnets (see [19]), because it has a similar meaning.

The pre�x speci�es a range of addresses by de�ning a common string of bits they start with.

The length of that bit string is given by the integer. The actual bits are taken from the address

part of the pre�x.

The notation may either refer to a speci�c address within a pre�x or to a pre�x as such. In

the latter case, the �unspeci�ed� bits after the bit string should be set to 0. Such addresses are

also reserved for anycasting tra�c to a router on the link (see [26]).

2.3.2 Address Scopes

RFC4007 [27] de�nes: �Every IPv6 address other than the unspeci�ed address has a speci�c

scope; that is, a topological span within which the address may be used as a unique identi�er for

an interface or set of interfaces. The scope of an address is encoded as part of the address [...].�

This means, that the scope sets a limit to where an IPv6 packet may be routed. The scope

is identi�ed by standardized pre�xes. A scope is a general concept, instances of a scope are

called zones. Since a node might be connected to multiple di�erent zones of the same scope,

there is a need to disambiguate addresses. RFC4007 de�nes that an implementation-dependent

string that identi�es a zone should be written behind an address, delimited by a percent (�%�)

character. Together with a pre�x length, an example may look like this: 2001:db8::%1/64.

Scopes can be sorted by the topological size they cover. The smallest scope is called interface-

local because it contains only a single interface. Addresses of that scope might be useful for

node-internal tra�c. The link-local scope comprises all nodes that can reach each other on the

link layer, meaning routing is prohibited. The global scope includes the whole world. The single

zone with global scope is the entire internet. The boundaries of zones of other scopes have to be

chosen by network administrators.

2.3.3 Delivery Schemes: {Uni,Any,Multi,Broad}cast

Usually an IPv6 address identi�es a speci�c interface on a speci�c host. But this is not always

the case � there are multiple delivery schemes. Among them are the ones depicted and described

9

2.4 Layer 3: ICMPv6

broadcast multicast

unicast anycast

Fig. 2: Di�erent delivery schemes govern where tra�c is directed. With unicast, the destination
is always exactly one target. With broadcast, tra�c goes to all targets (within a given
scope). Multicast tra�c is routed to a speci�c set of targets. Anycast is like unicast, but
the single target may change at the behest of the responsible routing protocol.

in �gure 2.

IPv4 has a dedicated broadcast address in each subnet [28]. In IPv6, there is no such

broadcast. Instead, there are standardized multicast addresses which are bound to scopes, so

that there is no need for allocating multicast or broadcast addresses per network.

2.4 Layer 3: ICMPv6

The Internet Control Message Protocol for IPv6 (ICMPv6) [29] is intertwined with IPv6: It

is transported in the payload of IPv6 and IPv6 cannot function properly without it. ICMPv6

serves similar purposes like ICMPv4 [30], ARP [20], RARP [21] and IGMP [31] together.

ICMPv6 messages are divided into error messages and information messages. The former are

to inform other nodes about errors while processing IPv6 packets. The information messages serve

multiple purposes, which are not all relevant for this work. In the following, Neighbor Discovery,

Multicast Listener Discovery and Stateless Address Autocon�guration will be explained, which

are all protocols based on ICMPv6 information messages.

2.4.1 Neighbor Discovery Protocol (ND)

Two nodes (hosts or routers) that are connected to the same link, are called neighbors. In order to

use a link, a node needs to become acquainted with its neighbors. The Neighbor Discovery (ND)

protocol [32], which is part of ICMPv6, solves this problem. More precisely, it o�ers solutions

for the following problems:

10

2.4 Layer 3: ICMPv6

address autocon�guration What addresses may a node choose?

address resolution What is the link-layer address of an on-link IP address?

duplicate address detection

(DAD)

Is a given on-link address already in use in this zone?

neighbor unreachability detection Are the neighbors still reachable?

next-hop determination Where should tra�c be sent?

parameter discovery What parameters should be known about the link (e.g.

MTU) and the IP-layer (e.g. hop limit)?

pre�x discovery Which pre�xes are on-link? (Meaning which addresses

are reachable without leaving the link?)

redirect Is there a better �rst hop?

router discovery Which neighbors route tra�c to what other links?

The address autocon�guration is for this work the most relevant problem to look at. It

aims to let nodes con�gure their addresses on their own. This involves almost all of the other

problems. To solve this, the ND o�ers Stateless Address Autocon�guration (SLAAC), which will

be investigated in section 2.7.

The ND facilitates its solutions mostly through these four di�erent ICMPv6 packet types:

• The Neighbor Solicitation is a query to trigger Neighbor Advertisements. It is used for

address resolution, DAD and neighbor unreachability detection.

• The Neighbor Advertisement is sent as a reply to a Neighbor Solicitation. The message

states for an IP address, that it is reachable and at which link-layer address it is reachable.

As a performance optimization, a node may send Neighbor Advertisements without being

asked in case its link-layer address changes.

• The Router Solicitation is a request for Router Advertisements.

• The Router Advertisement can only be sent by routers. It implies that the sending node is

a router and delivers information about what pre�xes are on-link, what pre�xes the router

will route and more. This message conveys whether SLAAC may be used and whether

DHCPv6 is available.

Using Neighbor Solicitation and Neighbor Advertisement messages, a node can perform address

resolution. With IPv4, this has been done using ARP [20]. The same can be said for inverse

address resolution and RARP [21].

Link-Scope Addresses: Avoiding Dependencies on Link-Layer Protocols In contrast to IPv4,

IPv6 aims to be more independent of the link-layer it is built upon. (IPv4 has a quite strong

dependency on Ethernet.) The Neighbor Discovery (ND) protocol (see section 2.4.1) relies on

multicast at the link-layer, which limits the types of links with which ND is compatible. However,

there are standards that de�ne ND even for such links (e.g. for cellular links [33]).

11

2.4 Layer 3: ICMPv6

To loosen the dependency on link-layer addresses, IPv6 introduces link-scope addresses.

These addresses are �normal� IPv6 addresses, but they are only usable and unique within the

boundaries of a link. Hence they are somewhat like link-layer addresses but at the IP-layer.

There are unicast and multicast link-scope addresses. Every node generates a link-scope unicast

address per interface once it becomes online. This address is often derived from the correspond-

ing link-layer address (e.g. using EUI-64). Before using the generated address, the node assures

its uniqueness using Duplicate Address Detection (DAD).3

Duplicate Address Detection (DAD) To avoid using addresses that are already in use, the

ND comes with an algorithm called Duplicate Address Detection (DAD), which is speci�ed in

[12]. This is performed every time before assigning an address to an interface, regardless of the

mechanism that triggered the assignment (SLAAC, DHCPv6, ...).4

An address whose uniqueness is to be determined is called a tentative address. Usage of

tentative addresses is limited to what is necessary for DAD. There are two cases in which the

lack of uniqueness will be detected:

• The node sends a Neighbor Solicitation with its tentative address as target. If another node

responds with a Neighbor Advertisement, the address is already in use. To increase cer-

tainty, the transmission of Neighbor Solicitations is repeated. The number of transmissions

and the time to wait after them can be con�gured using variables.5

• There could be another node which simultaneously performs DAD for the same tentative

address. In this case, the node would receive a Neighbor Solicitation that is not from

itself, originates from the unspeci�ed address and has the tentative address as target. This

indicates that the address is not unique.

To avoid congestion, the �rst MLD message and Neighbor Solicitation is delayed by a random

time.

If a duplicate address is detected and the tentative address has been generated from the

link-layer address, the chances are that the link-layer address is not unique. It is recommended

to stop using the interface at all.

2.4.2 Multicast Listener Discovery (MLD)

IPv6 makes heavy use of multicast (e.g. for ND [32] and DHCPv6 [9]). Nodes that want to

receive tra�c for a speci�c multicast address are called listeners [34]. This section explains how

multicast tra�c is sent to listeners.

Within a link, an IPv6 multicast address will be mapped to a link-layer multicast address.

The link-layer protocol is then responsible for sending the tra�c to at least all listeners. (The

ND protocol assumes that the link-layer supports multicast. If not, other solutions may be

3 If DAD fails, the node may try a di�erent address. If the failure suggests that the link-layer address is not
unique, the node should abort using that interface.

4 There are two exceptions where DAD will not be done: When DAD is disabled by a per-interface variable,
and when the address to be assigned is an anycast address.

5 The protocol default is a single Neighbor Solicitation and 1 second waiting after transmission.

12

2.5 Layer 4: UDP

de�ned. [32]) For example, the link-layer protocol Ethernet constructs Ethernet-addresses from

IPv6 multicast addresses by appending the last 32 bit of the IPv6 address to the well-known

pre�x 0x3333 (e.g. ff02::1:2 becomes 33:33:00:01:00:02) [17].

For IPv6 multicast addresses with a scope greater than link-local, delegating multicasting to

the link-layer is not su�cient, because it could be necessary to route the multicast tra�c across

multiple links. If a router knows at which links the listeners are, it can send the tra�c there

using the link-layer multicast mentioned before. Hence, routers need a mechanism to �nd out

on which links there are listeners for which IPv6 multicast addresses.

For IPv4, this problem has been solved with the Internet Group Management Protocol

(IGMP) [31]. For IPv6, a protocol called Multicast Listener Discovery (MLD) has been de-

�ned as a part of ICMPv6 (whose implementation is mandatory).

Currently, the MLD protocol is speci�ed in two versions: MLDv1 [34] and MLDv2 [35].

Both versions serve the purpose of providing routers with the information whether there are

any listeners for a given IPv6 multicast address present on a given link. Neither the number of

listeners nor their unicast addresses is conveyed, just the presence of at least one listener.

MLDv1 does that by using three types of messages:

• A Report message is sent by a node to indicate that it wants to receive tra�c for a speci�c

multicast address.

• A Done message is sent by a listener to express it no longer wants to receive tra�c for a

speci�c multicast address. There may be other listeners that still want to receive tra�c

for that multicast address, so the routers validate the absence of listeners before stopping

routing tra�c to for the multicast address to the link.

• A Query message is sent by a router to trigger Report messages. To avoid unnecessary

tra�c, only the router with the lowest link-local IPv6 address sends Query messages.

MLDv2 is interoperable with MLDv1 and extends its functionality by �ltering multicast tra�c

based on its source address. In a MLDv2 Report message, a listener can whitelist or blacklist

source addresses from which it wants to receive tra�c for a speci�c multicast address.

2.5 Layer 4: UDP

The User Datagram Protocol (UDP) is mentioned here, because DHCPv6 builds upon it. It is

fairly simple: Its de�nition, RFC768 [14], is only three pages long.

The header together with an arbitrary payload is called a datagram and is carried in the

payload of IPv4 or IPv6. The header contains a source and destination address, which are called

ports, the length of the datagram and a checksum. Source port and destination port are each

16 bit long and are meant to identify individual applications on a single node.

The checksum incorporates the datagram and parts of the IP header. IPv4 already has a

checksum, so the UDP checksum is optional when using UDP over IPv4. Because IPv6 has shifted

the responsibility of data integrity away from itself, the UDP checksum has become mandatory

for UDP over IPv6 [5].

13

2.6 Overview of Con�guration Mechanisms for IP Nodes

2.6 Overview of Con�guration Mechanisms for IP Nodes

IPv6 nodes need at least a link-local address to communicate with other nodes. To communicate

with nodes at other links, they need at least one address with a greater scope. IPv4 nodes

require a single IPv4 address to communicate with other nodes. If the scope of that address is

not su�cient, this is usually solved with NAT (see section 3.1.1).

To resolve FQDNs, IPv6 nodes as well as IPv4 nodes need to know addresses of recursive

DNS servers (RDNSS), commonly in conjunction with a list of zones to append hostnames to

(DNSSL). This information is here named DNS con�guration. Often, even more information is

required (e.g. network boot information), which is vaguely summarized by RFC8415 [9] as �other

con�guration information�. It covers a variety of information and is designed to be extensible,

which justi�es the nebulous term. The DNS con�guration is part of the other con�guration

information but can be treated separately.

There are several con�guration mechanisms to tell a node all that information:

• It is always possible to enter the information by hand or using a custom automation. This

is called �manual con�guration�. It might be appropriate where no dependency on the

other mechanisms is desired, for example for an interface of a DHCPv6 server. RFC2322

[36] speci�es a protocol that can centrally (statefully) assign con�guration to arbitrary IP

nodes by using clothes-pegs and humans as transport mechanism. In most cases, another

mechanism is preferred.

• For IPv4 nodes, DHCPv4 is a mechanism to con�gure the mentioned information. It is

a server-client protocol that is built on UDP. The DHCPv4 server is stateful, because it

tracks the leased addresses. Besides exactly one IPv4 address per link-layer address, it can

also supply other con�guration information.

For IPv6, there are two con�guration mechanisms: SLAAC and DHCPv6. Either one of them

or both together may be used.

The distinction between stateful and stateless operation is based on whether or not a single

service needs to �maintain any dynamic state for individual clients�, as clari�ed by RFC3736

[37]. SLAAC is always stateless. When DHCPv6 is used for IPv6 address and/or IPv6 pre�x

allocation, it has the sole authority on that and therefore needs to maintain such an individual

state, which makes it stateful. However this feature is not compulsory, which enables stateless

operation of DHCPv6.

In either case ICMPv6 Router Advertisements are used to locate routers.

• When doing stateful con�guration, DHCPv6 is used �just like� DHCPv4. The DHCPv6

server leases addresses to its clients and provides other con�guration information.

• When doing stateless con�guration, SLAAC is used. This implies that each node chooses

its address on its own. The DNS con�guration can be provided in Router Advertisements

[38]. They can also hint that stateless DHCPv6 is available. For handling con�icting

con�guration information, see the following bullet point. Providing stateless DHCPv6 is

optional.

14

2.7 Stateless Address Auto Con�guration (SLAAC)

• Stateful (DHCPv6) and stateless (SLAAC) con�guration may be provided simultaneously.

This applies to all con�gurable information, including addresses. In this case, hosts accept

the union of all available information. The information should be consistent, but may

di�er. To solve a con�ict, a host should prefer more recent information and may prefer

information that was obtained from a more secure source. (see [12])

Table 4 provides an overview over the con�guration mechanisms. In the following, SLAAC

(section 2.7) and DHCPv6 (section 2.8) will be explained in more detail.

2.6.1 Separation of Concerns in IPv6

The DNS con�guration and other con�guration information does not have to be known to use IP.

However, such information is usually of interest shortly after the IP connectivity was established.

Especially the DNS con�guration is practically an inevitable requirement for IP nodes (see [38]).

SLAAC can supply all necessary information for the IP layer, without �irrelevant� information

overhead. Stateless DHCPv6 can be added if needed to provide con�guration beyond that. This

achieves the clearest separation of concerns using the presented con�guration mechanisms.

The DNS con�guration is mentioned explicitly, because it is so important, that SLAAC was

extended to provide it, as section 2.7.3 describes. On nodes that also operate IPv4 using DHCPv6

it can be su�cient to solely use SLAAC and do DNS queries using IPv4 and the recursive DNS

servers learned from DHCPv4.

Stateful DHCPv6 extends stateless DHCPv6 by address assignment and pre�x delegation.

The former can also be done using SLAAC, the latter not. DHCPv6 creates the impression to

be a standalone con�guration mechanism, but it depends even in stateful operation on ICMPv6

features like SLAAC for link-local address generation and Router Advertisements for router

discovery.

In contrast, DHCPv4 violates the boundaries of the OSI model layers, because it de�nes

special behavior at the network layer (e.g. the all-zero IPv4 address), whilst building upon a

transport layer protocol. The DHCPv4 standard de�nes in section 2 of RFC2131 [8]: �In the

case of a client using DHCP for initial con�guration (before the client's TCP/IP software has

been completely con�gured), DHCP requires creative use of the client's TCP/IP software and

liberal interpretation of RFC 1122.�

2.7 Stateless Address Auto Con�guration (SLAAC)

The protocol Stateless Address Auto Con�guration (SLAAC) is de�ned by RFC4862 [12] and

part of ICMPv6. It supplies nodes with IPv6 addresses without the need for a central, stateful

service.

As noted by RFC4862 the design goals were:

1. There should be no need to con�gure a node manually before connecting it to the network.

2. Using the network should not require a central con�guration service (DHCP). This should

apply to single links as well as to networks comprised of multiple links.

15

2.7 Stateless Address Auto Con�guration (SLAAC)

IPv4 IPv6
stateful stateful stateless
DHCPv4 stateful DHCPv6 ICMPv6 stateless DHCPv6

addresses for
assignment

yes yes yes (SLAAC) no

delegated pre�xes no yes no no
router addresses yes no yes (RA) no

DNS con�guration yes yes yes (RA) yes
other con�guration

information
yes yes no yes

Tab. 4: For each con�guration mechanism it is noted which information can be supplied. Each
information may also be supplied via manual con�guration. For more details, see sec-
tion 2.6.

3. It should be possible to gracefully change addresses. Gracefully means, that there is a

timespan where both old and new addresses are valid.

To ful�ll the �rst goal, SLAAC was built as an integral part of IPv6, its implementation is

mandatory. Furthermore, it has to be enabled by default. The default con�guration of the

protocol is intended to be su�cient to establish connectivity. By providing a way to generate

addresses in a stateless manner (no single service assigns single addresses), the second goal is

achieved. SLAAC introduces lifetimes of addresses that govern the usage of them, as described in

�gure 3. The usage of ICMPv6 Router Advertisements to set and update lifetimes of generated

addresses accomplishes the third goal.

The generation of link-local addresses and global addresses di�ers, as described in the fol-

lowing sections. SLAAC always generates a link-local address per interface. The generation of

global addresses is only possible if routers send appropriate messages. Those messages are also

used to indicate the presence of the routers and optionally, to provide a list DNS con�guration.

2.7.1 Generation of Link-Local Addresses

SLAAC generates a link-local scope address for each interface of a node by combining the well-

known pre�x fe80::/10 with an interface identi�er. The length of the interface identi�er is

subject to link-speci�c standards. The interface identi�er is written in the very right bits of the

IPv6 address Bits that are not covered by this or the well-known pre�x are set to zero. Such a

link-local address will look like this:

1111111010 if needed: zeroes interface identi�er

The pre�x length that is used for the link is changed as appropriate with respect to the

interface identi�er length. In the case of Ethernet links, RFC2464 [17] speci�es how a 64 bit

long interface identi�er is generated from a 48 bit long MAC address. The according pre�x is

fe80::/64, because 128 bit minus the interface identi�er length is 64 bit.

Link-local addresses get in�nite lifetimes.

16

2.7 Stateless Address Auto Con�guration (SLAAC)

Fig. 3: SLAAC introduces some states of IPv6 addresses, as shown here with the rectangles.
Addresses and pre�xes provided via DHCPv6 also go through these states.
Once an address gets scheduled for assignment to an interface, it becomes tentative. In
this state, it must only be used for Duplicate Address Detection (DAD, see 2.4.1).
If DAD succeeds, the address becomes preferred. The preferred state is a valid state, which
is de�ned by permitting using the address for sending and receiving IPv6 packets. After
the preferred lifetime expires, the address becomes deprecated, but remains valid. The
deprecated address is distinguished from a preferred address by discouraging its usage. A
deprecated address should not be used for new upper layer connections. It may be used
to continue established connections.
After the valid lifetime expires, the address becomes invalid and can no longer be used.
The valid lifetime is counted from the same start time as the preferred lifetime, which is
why the valid lifetime must be greater than the preferred lifetime.

17

2.7 Stateless Address Auto Con�guration (SLAAC)

As with all unicast addresses, link-local addresses have to pass DAD (see 2.4.1) before getting

assigned to an interface.6 If DAD fails and the address was generated from an interface identi�er,

this may be because the link-layer address is not unique. In such a case, RFC4862 recommends

to disable the interface entirely, because communication would fail on the link-layer.

2.7.2 Generation of Global Addresses

The following method of SLAAC to generate global addresses can be disabled, but is required

to be enabled by default.

ICMPv6 Router Advertisement messages can carry Pre�x Information options. Those contain

a pre�x, a Valid Lifetime, a Preferred Lifetime, the on-link �ag and the autonomous address-

con�guration �ag. The latter, if set (value 1), permits generating an address using the pre�x. If

the on-link �ag is set, tra�c to addresses within the pre�x will be sent directly without using a

router. The on-link �ag does not alter address con�guration.

Like with link-local addresses a global address can be generated by combining the pre�x with

an interface identi�er:

pre�x interface identi�er

The length of the pre�x must �t to the length of the interface identi�er. The preferred

and valid lifetime of the generated address are taken from the respective values in the Router

Advertisement. Those values can by updated later by new Router Advertisements. As mentioned

earlier, such an address must pass DAD before getting assigned to an interface.

2.7.3 DNS Con�guration

RFC8106 [38] speci�es two DNS RA options for ICMPv6 Router Advertisement messages, which

allow to transmit IPv6 addresses of recursive DNS servers (RDNSS) and a Domain Search List

(DNSSL). Both options contain a single lifetime and at least one entry. The options may be

repeated to specify multiple entries with varying lifetimes.

The RFC claims that the need for DNS con�guration (RDNSS addresses and a DNSSL) is

inevitable in any �practical network�. On nodes that operate both IPv4 and IPv6, the DNS

con�guration can be obtained via DHCPv4. Because nodes that only use IPv6 cannot rely on

this, there is a need for a con�guration mechanism in IPv6. DHCPv6 can provide the DNS con-

�guration, but the con�guration mechanism introduced by RFC8106 makes �practical networks�

without DHCPv6 possible.

If DNS con�guration is obtained from DNS RA options and DHCPv6, RFC8106 recommends

to use all information available and give the DNS con�guration from DHCPv6 precedence. If the

DNS con�guration was supplied using the Secure Neighbor Discovery (SEND), that con�guration

must be preferred.

6 Performing DAD can be manually disabled by setting the SLAAC protocol variable DupAddrDetectTransmits
of an interface to zero.

18

2.8 DHCPv6

Atlasis and Rey [39] tested in 2015 the behavior of six di�erent operating systems when

confronted with DNS con�guration from Router Advertisement messages and DHCPv6. They

found that di�erent operating systems and versions of operating systems used di�erent sources for

their DNS con�guration. They concluded that the �exibility of these con�guration mechanisms

comes with noticeable complexity and the unde�ned, implementation-speci�c behavior burdens

administrators. They also identi�ed vulnerability of some clients to rogue Router Advertisement

messages, which could be abused to distribute malicious DNS con�guration. This security issue

is also described in RFC6104 [40].

2.8 DHCPv6

TheDynamic Host Con�guration Protocol for IPv6 (DHCPv6) was originally de�ned in RFC3315

[41] but later replaced by RFC8415 [9] to incorporate other RFCs that amended RFC3315.

DHCPv6 is introduced as �an extensible mechanism for con�guring nodes with network con-

�guration parameters, IP addresses, and pre�xes. Parameters can be provided statelessly, or

in combination with stateful assignment of one or more IPv6 addresses and/or IPv6 pre�xes.

DHCPv6 can operate either in place of or in addition to Stateless Address Autocon�guration

(SLAAC)�.

DHCPv6 is a client-server-protocol that exchanges messages between clients, relay agents and

servers. Clients are IPv6 nodes that want to receive con�guration information, servers are those

who provide the information and relay agents are sometimes needed for message transportation.

The DHCPv6 messages are transported in the payload of UDP datagrams which in turn

are transported in the payload of IPv6 packets. This implies that sender and receiver of those

messages need valid IPv6 addresses. Using SLAAC, IPv6 nodes will always generate link-local

addresses on their own (see section 2.7.1), so for link-local scope, this problem is solved. Unfor-

tunately and usually where clients appear at multiple links, servers may not be attached to the

same link as the clients. In this case, clients would need valid addresses of greater scope than

link-local. DHCPv6 solves this problem using relay agents.

2.8.1 Relay Agents

One, multiple in chain or no relay agent at all may be used. This applies to stateless as well

as stateful DHCPv6. If client and server are not connected to the same link, relay agents

are necessary. They are placed to be reached by clients using link-scope addresses and have

connections to servers or other relay agents that may be unreachable for the client.

A client does not have to be aware of whether it is communicating with a server or a relay

agent.

If a client does not know a reachable unicast destination, it sends its messages to the well-

known link-scope multicast address ff02::1:2. All DHCPv6 servers and relay agents at the link

receive tra�c to this multicast address. This eliminates the need to con�gure server addresses

on clients. As distinct from DHCPv4 and due to multicasting, nodes that are not interested in

the DHCPv6 messages do not receive them.

19

2.8 DHCPv6

Fig. 4: DHCPv6 relay agents are forwarding messages between clients and servers. The rectangles
here represent DHCPv6 messages or parts of them and are color-coded by whom they
are created. In this example, the client sends a SOLICIT message via two relay agents
to the server. The �rst relay agent in chain appends an option. The server uses the
RELAY-FORWARD messages to �gure out how the reply, in this example an ADVERTISE

message, needs to be nested within RELAY-REPLY messages.

The relay agent passes all messages along unchanged, but adds additional information for

the server to facilitate the relaying. A relay agent may add further information (e.g. the link-

layer address of the client, see [42]) to a RELAY-FORWARD message, to aid the server. A relay

agent sends by default all messages from clients to the well-known site-scope multicast address

ff05::1:3, which is meant to target all servers. This default address may be changed into a

custom list of unicast and multicast addresses.

To let the server know where to send responding tra�c, the relay agent encapsulates the

message within a RELAY-FORWARD message, see �gure 4. This encapsulating message also contains

two IPv6 addresses that are used in responding tra�c from the server: The peer-address is used

to address the relay agent and the link-address is used by the relay agent to identify the link of

the client (or the next relay agent). The server copies those values to a RELAY-REPLY message in

which it nests the actual message for the client. The nesting of RELAY-FORWARD and RELAY-REPLY

messages may gain multiple layers if multiple relay agents are chained.

Whenever a server wants to send a message via a relay agent, it needs to know how to nest

the message. This information is taken from the forerun message of the client. If the server

wants to send a RECONFIGURE message, it initiates the message exchange. For that reason the

server may not be able to derive the necessary information from forerun messages. RFC8415

section 18.3.11 [9] allows the server to get that information �through some external agent�.

For certain messages (see �gure 5), the server may add a Server Unicast option into its

messages. Then, a client may reply using unicast, bypassing any relay agents. Obviously, the

relay agents can not supply additional information in this case and the server should not o�er

to accept unicast messages, if it is interested in the information added by relay agents.

20

2.8 DHCPv6

2.8.2 Client Identi�cation and the Relationship Between IPv6 Addresses and Link-Layer

Addresses

With IPv4, every interface got a single IPv4 address. More precisely, DHCPv4 assigns a single

IPv4 address to a single link-layer address.

This relationship has changed with IPv6: A node may have multiple IPv6 addresses per

interface, meaning per link-layer address. Usually IPv6 nodes have at least a link-local and a

global scope IPv6 address.

DHCPv6 accommodates this fundamental change by no longer relying on link-layer addresses

to identify clients. Instead, each client and server (per node, not per interface) generates a

DHCP Unique Identi�er (DUID). This value may be formed out of a link-layer address, but

must be treated as an opaque value, as clari�ed by RFC8415 section 11 [9]. Nevertheless, some

implementations violate this restriction and extract the link-layer address from the DUID. A

DUID may change for the same node when a di�erent implementation or con�guration of that

is used (e.g. when booting a di�erent operating system).

However, DHCPv6 servers may use the use the link-layer address of the requesting interface

when deciding about a lease. If server and client communicate over a single link, the server could

obtain the link-layer address directly from the link-layer messages or by using the Neighbor

Discovery. If one or more relay agents are between them, the relay agent connected to the client

may add the link-layer address of the client to the DHCP message, as standardized by RFC6939

[42] and illustrated in �gure 4.

To satisfy the desire to identify DHCPv4 and DHCPv6 clients with the same identi�er, both

protocols need to support the same identi�er. This can be the link-layer address or the DUID. It

should be noted that the former identi�es individual interfaces while the latter identi�es whole

nodes. The link-layer address was originally used by DHCPv4 and its predecessor BOOTP,

and can be used with DHCPv6. The DUID is the recommended identi�er type for DHCPv6.

RFC4361 [43] speci�es how it can be used in DHCPv4.

As a side note, since 2012, Google prominently refuses to implement a DHCPv6 client in

the popular operating system Android, because they fear DHCPv6 server operators will not

provide multiple addresses per interface and thereby break some functionality which depends on

that. Despite the possibility to assign multiple addresses per interface with DHCPv6, Google

assumes that the operators will limit that to the relationship cardinality of DHCPv4, likely to

reduce the number of addresses in the network or to require fewer changes when enabling IPv6.

Instead, Android uses SLAAC with the DNS con�guration extension (see section 2.7.3) as IPv6

con�guration mechanism. (See [44]�[46].)

The lack of a DHCPv6 client in Android does not preclude DHCPv6 as con�guration mech-

anism for the scope of this work, because Android nodes are not among the intended clients.

Nonetheless, the decision of Google shows that some usecases would bene�t of multiple IPv6

addresses per link-layer address. Also, this might be of interest if the usecases of the anticipated

IPv6 con�guration mechanism grow by new kinds of nodes.

21

2.8 DHCPv6

message format option format
message-type transaction-id options option-code option-len option-data

1 byte 3 byte variable 2 byte 2 byte variable

Tab. 5: The left table shows the format of a DHCPv6 message as it is sent over the network.
The options �eld contains a variable number of options, whose format is shown in the
right table. The length of each �eld is denoted below them.

DHCPv4 DHCPv6

DHCPACK REPLY

DHCPDECLINE DECLINE

DHCPDISCOVER SOLICIT

DHCPINFORM INFORMATION-REQUEST

DHCPNAK REPLY

DHCPOFFER ADVERTISE

DHCPRELEASE RELEASE

DHCPREQUEST REQUEST

DHCPREQUEST RENEW

DHCPREQUEST REBIND

- CONFIRM

- RECONFIGURE

- RELAY-FORWARD

- RELAY-REPLY

Tab. 6: Comparison of the DHCPv4 and DHCPv6 messages types de�ned in RFC2131 [8] and
RFC8415 [9]. There are more message types de�ned in other RFCs. The bottom four
message types do not have (dedicated) equivalents in the considered DHCPv4 message
types.

2.8.3 DHCPv6 Messages

All DHCPv6 messages are built very modular. The only �xed �elds are the message type and the

transaction identi�er (see table 5). Everything else is contained within �options�. Some options

may contain other options. Options consist of �elds for the type, the length and option-speci�c

data (see table 5). The total length of a message can be obtained from the length �eld of the

UDP datagram.

This architecture avoids transmitting unnecessary information and remains extensible.

All message types de�ned by RFC8415 are shown in �gure 5. The message types of DHCPv6

are compared to DHCPv4 message types in table 6.

2.8.4 Retransmission of DHCPv6 Messages

After a client sends a message, it waits for an answer. If it does not receive any, it retransmits

its message. RFC8415 de�nes for each message type how often, for how long at what times

a message should be transmitted. The retransmission mechanism is meant to account for any

messages that did not make it to the server. To inform a server of how long the client has

attempted a particular message exchange, the client adds this time in hundredths of a second

to each message using the Elapsed Time option. The client updates this time every time it

22

2.8 DHCPv6

Fig. 5: These DHCPv6 message types are de�ned by RFC8415 [9]. The red messages are mul-
ticasted to all servers and relay agents. The yellow messages are either multicasted to
all servers and relay agents or, if the server allowed that using a Server Unicast option,
unicasted to a server.8 The RELAY-FORWARD message is unicasted to a server or multicas-
ted to all servers. The RELAY-REPLY message is unicasted to the appropriate relay agent.
The blue messages are unicasted to clients.

23

2.8 DHCPv6

Fig. 6: As per RFC8415, DHCPv6 REQUEST messages are transmitted 10 times if the server does
not reply. The delay between those messages is shown here: each mark on a line stands
for a message transmission. The red line shows the times for when the randomization
factor has the greatest possible value every at every retransmission, the purple line for
when it has the smallest possible value every time.

transmits the message.

The duration after which to retransmit a message is calculated after every transmission to

incorporate a randomization factor. This is done to avoid congestion when many clients want

to perform a message exchange simultaneously. The duration until the next transmission is �rst

increased exponentially, but then linear after a threshold (which depends on the message type).

The retransmission is limited for some messages by a number of transmissions or a total duration.

Messages of type SOLICIT and INFORMATION-REQUEST get transmitted inde�nitely, but all other

message transmissions (as de�ned in RFC8415) declare failure eventually.

As an example, �gure 6 shows how REQUEST messages get retransmitted.

The algorithm for (re)transmission of messages is varied for some message types, e.g. for

SOLICIT messages, as described in 2.8.7.

Messages sent by servers do not get retransmitted, with the exception of RECONFIGURE mes-

sages. When sending ADVERTISE or REPLY messages, a server does not need answers from

the client. Using a RECONFIGURE message, the server can initiate a message exchange (see sec-

tion 2.8.8), which makes it responsible for assuring the communication partner received the

message. A RECONFIGURE message is retransmitted for a limited number of times.

8 RFC8415 states in section 16 �A server MUST discard any [...] Information-request messages it receives with
a Layer 3 unicast destination address.�, whilst section 18.4 states �For [...] Information-request [...] messages,
[unicast transmission] is allowed only if the Server Unicast option is con�gured.�. It is not clear, whether the
standard permits unicast transmission of INFORMATION-REQUEST messages. The Dynamic Host Con�guration

Working Group of the Internet Engineering Task Force, who developed the standard, is currently discussing
under what circumstances unicast transmission of INFORMATION-REQUEST messages is allowed, see [47].

24

2.8 DHCPv6

2.8.5 Stateless vs Stateful DHCPv6

A DHCPv6 server may operate either in stateless or stateful mode, as mentioned in section 2.6.

In stateless operation, only other con�guration information is provided. A stateful DHCPv6

server provides additionally so-called Identity Associations, which convey addresses or pre�xes

and thereby provide address con�guration (see section 2.8.7). Clients and servers that only use

stateless DHCPv6 only need to implement a subset of the protocol. The necessary messages for

stateless and stateful DHCPv6 are shown in �gure 5.

The availability of at least one DHCPv6 server can be indicated in Router Advertisements

(see section 2.4.1). The �Other Con�guration� �ag in a Router Advertisement signals whether

stateless DHCPv6 is available. The �Managed Address Con�guration� �ag expresses the avail-

ability of a DHCPv6 server that assigns addresses. The latter is more precise than indicating the

availability of a stateful DHCPv6 server, because a stateful server could not provide addresses

but other Identity Associations (currently only pre�xes). (See RFC4861 [32].)

A node may, but is not required to use DHCPv6 upon receiving Router Advertisements that

suggest the availability of a DHCPv6 server. A node can also attempt to use DHCPv6 regardless

of any Router Advertisements.

Like with DHCPv4, multiple DHCPv6 servers can o�er their service to a client simultaneously.

2.8.6 Stateless DHCPv6

The other con�guration information is supplied using merely two messages: The client sends an

INFORMATION-REQUEST message to the server, which replies with a REPLY message. The message

of the server includes a lifetime that speci�es the time interval after which the client should

update the information by querying the server again.

Because the client multicasts the INFORMATION-REQUEST message to all servers and relay

agents, it could receive multiple REPLY messages. RFC8415 does not specify how to process

multiple REPLY messages, so this is up to the client implementation.

A client is not required to include a Client Identi�er option in the INFORMATION-REQUEST

message to hide its identity. A server is not required to answer to such a request.

The client uses an Option Request option to specify which information it is interested in. It

can include further options to specify values it would like to receive.

2.8.7 Stateful DHCPv6

In contrast to stateless DHCPv6, stateful DHCPv6 can be used to assign Identity Associations

(IAs) to clients and manage the life-cycle of the IAs. An IA contains either addresses or pre�xes

and thereby facilitates the address con�guration fo IPv6 nodes. The permission granted by a

DHCPv6 server to use an IA for a certain period of time is called a �lease�. A �binding� is a

group of client-speci�c information at the server, consisting of IAs and/or other con�guration

information. This terminology is according to RFC8415 [9].

Finding and Selecting Servers The Server Discovery algorithm enables a client to �nd available

DHCPv6 servers and select one of them.

25

2.8 DHCPv6

Fig. 7: This �owchart shows how a DHCPv6 client chooses a server. This is described in more
detail in 2.8.7.

First, a client locates all available servers by sending a SOLICIT message to the well-known

link-scope multicast address of all servers and relay agents. The servers (if need be through a

relay agent) answer with an unicasted ADVERTISE message.

The client generates a transaction ID and includes it together with its DUID and an Option

Request option in the SOLICIT message. The Option Request option contains option codes of

those in which the client is interested. The client also includes options for IAs, as described later.

The server copies the transaction ID and client DUID into the ADVERTISE message. It also

adds its DUID and values for IAs and the options which the client requested. If con�gured to

do so, the server adds a Preference option and a Recon�gure Accept option. The latter indicates

support for the recon�guration mechanism, which is explained in section 2.8.8.

The following selection process is illustrated in �gure 7.

The client waits for more than a second9 to receive ADVERTISE messages. If the client receives

an ADVERTISE message with a preference value of 255, it aborts waiting and selects the server of

that ADVERTISE. If the client receives a single ADVERTISE after the waited interval, it answers to

that. If it did not receive any, it retransmits the SOLICIT message and waits about a second10.

The retransmission is repeated inde�nitely until �rst receipt of an ADVERTISE message, which will

be used by the client. If the client received multiple ADVERTISE messages after the �rst SOLICIT

message, it chooses one.

If the client can choose, it should select the server with the highest preference value. It may

disregard this rule to select a server with a better set of advertised parameters. The best set of

advertised parameters also wins among multiple ADVERTISE messages with the same preference

value.

Rapid Commit The algorithm of selecting a server is slightly di�erent when the client wants to

use the rapid commit mechanism. This mechanism implements the con�guration process with

9 The client waits for SOL_TIMEOUT+SOL_TIMEOUT ·RAND, where SOL_TIMEOUT is one second and
RAND is a random real number between zero (exclusive) and 0.1 (inclusive).
10 The time to wait is changed after the �rst SOLICIT message by changing the lower bound of RAND to −0.1.

26

2.8 DHCPv6

name description T1 and T2 values IAID other content

IA_TA temporary addresses × list of addresses
IA_NA non-temporary addresses × × list of addresses
IA_PD pre�x delegation × × list of pre�xes

Tab. 7: These Identity Associations are available in DHCPv6. The IA_TA does not contain T1
and T2 values. All contain an identi�er, the IAID. Each address and pre�x has preferred
and valid lifetimes associated with it. See section 2.8.7.

only two messages, as a performance optimization. The client can request this by including a

Rapid Commit option in the SOLICIT message. Servers that o�er support for rapid commit reply

with a REPLY message containing a Rapid Commit option, instead of an ADVERTISE message.

Simultaneously, other servers may send ADVERTISE messages to the client.

The client uses the �rst appropriate REPLY message it receives and aborts waiting for more

messages, even when only having sent the initial SOLICIT message.

Until the next retransmission of the SOLICITmessage, the client may have received ADVERTISE

messages but no appropriate REPLY messages. In this case, the client starts the con�guration

without the rapid commit mechanism. While this is in progress, the client could still receive

REPLY messages with Rapid Commit option. In this situation the client may decide to cancel the

normal con�guration and use the REPLY message with Rapid Commit option.

Identity Associations and Lifetimes An Identity Association (IA) is a group of stateful infor-

mation of a single type. RFC8415 [9] speci�es the three types listed in table 7. Addresses in

IAs are meant to be assigned to interfaces of the requesting node. Pre�xes in IAs can be used

by the DCHPv6 client to in turn assign contained addresses or pre�xes to other nodes (so the

DHCPv6 client sends Router Advertisements and/or becomes a DHCPv6 server).

A DHCPv6 client can request multiple addresses or pre�xes by including multiple IAs in a

SOLICIT message. A client has to use at least one IA per interface. It chooses an identi�er per

IA that is unique among itself and the IA type.

Each address and pre�x has a preferred and valid lifetime, as described in �gure 3. Those

values may be set to in�nity, but usually they expire eventually. DHCPv6 has a mechanism to

extend lifetimes, which can be applied to all lifetimes, except to the preferred lifetime of tempo-

rary addresses. This exception is what distinguishes temporary addresses from non-temporary

addresses. After the preferred lifetime of a temporary address expires, the addresses is in dep-

recated state, meaning it is only used for established, but not for new upper layer connections

(e.g. TCP sessions). The deprecated state may be prolonged by extending the valid lifetime.

The extension of lifetimes is controlled by two values in an IA named T1 and T2. T1 is the

time interval after which the client should start to renew the IA. T2 is the time interval after

which the client should start to rebind the IA. The di�erence is, that when renewing, the client

only contacts the server from which it obtained the IA. When rebinding, the client contacts all

servers. Both behaviors are explained in the following sections. IA_TA do not come with T1

and T2 time intervals, because their preferred lifetime can not be extended. The values should

27

2.8 DHCPv6

Fig. 8: These message exchanges can be used by DHCPv6 clients to obtain Identity Associations.
There can be Relay Agents involved between client and servers, which are not shown here.
This is described in more detail in 2.8.7.

satisfy the following equation11:

T1 < T2 < smallest preferred lifetime (2)

The server may set T1 and T2 to zero to indicate the client may choose appropriate values.

On-Link Determination A client is not allowed to assume a certain pre�x is on-link because it

received a certain IA_NA or IA_TA. Instead, it should rely on the information propagated by

Router Advertisement messages (DHCPv6 has no mechanism to convey that information). If an

IA_NA or IA_TA is assigned to a client, but the pre�x was not speci�ed as on-link in a Router

Advertisement message, the client will presume all addresses of that pre�x (except its own) are

o�-link and send tra�c to them via a router. The router may use an ICMPv6 Redirect message

to inform the client that a certain address is in fact on-link. If a client learns that an address or

pre�x is on-link, it will send tra�c to that directly over the link.

Obtaining Identity Associations for Address Assignment A DHCPv6 client can obtain one

or more IA_NA or IA_TA using the message exchanges described hereafter and illustrated in

�gure 8. IA_PD are not considered here because none of the clients in the RMC-DHCP or

PXE-DHCP group is expected to delegate pre�xes to other nodes.

First, a client selects a server using the Server Discovery algorithm described in 2.8.7.

During the Server Discovery, the clients can include IA_NA or IA_TA options in the SOLICIT

message to obtain IAs. The client chooses IAIDs. Each IA_NA and IA_TA needs to be

associated with exactly one client interface. The client can request multiple IAs per interface by

either including multiple IA_NA or IA_TA options in the messages to the server or by repeating

11 T1 and T2 may equal if they and the lifetimes are set to in�nity. If the server is not willing to extend the
lifetimes, it may set T1 and T2 to the valid lifetime.

28

2.8 DHCPv6

the message exchange with di�erent IAIDs. The client does not nest any IA Address options in

the IA_NA or IA_TA options in the SOLICIT message, because it does not know the addresses

it may get yet. The client can set the T1 and T2 �elds of IA_NA options in SOLICIT messages

to values it would like to get.

The server can assign multiple addresses (IA Address options) to each IA_NA or IA_TA

option. It �lls in all values it is willing to o�er and sends those in the ADVERTISE and REPLY

messages.

When sending a REQEST message, the client copies the IA_NA and IA_TA options from

the ADVERTISE message of the server. The client may adjust the lifetimes, T1 and T2 values to

request speci�c values. The server may honor the requested values.

Before assigning them to the interfaces, the client performs DAD (see 2.4.1) for each address.

If DAD reports that the address is already present on the link, the clients noti�es the server

using a DECLINE message. The server con�rms the rejection using a REPLY message. By protocol

default, the client attempts four times to send a DECLINE message.12

Maintaining Identity Associations Some time after a DHCPv6 client obtained IAs, it might

wish to extend the preferred and valid lifetimes of the addresses or pre�xes. The preferred

lifetime of temporary addresses can not be prolonged by design, hence the following only applies

to non-temporary addresses and pre�xes. A server can indicate that it will not extend lifetimes

of non-temporary addresses or pre�xes by setting the T1 and T2 values to the valid lifetime.

The following process is shown in �gure 9.

After the interval T1 passed, a client should start attempting to renew its addresses or

pre�xes. This is done by sending a RENEW message to the server that assigned the IAs to the

client. The server may extend some lifetimes. It can be con�gured to assign, if necessary, new

addresses or pre�xes to an IA. The server sends a REPLY message to the client in which it includes

the updated IAs.

If the DHCPv6 server receives a RENEW message with an IA it does not know about, it has

two choices:

• The server may create a new binding with new addresses or pre�xes. If it is con�gured

to do so, but has no addresses or pre�xes available, it sends the IA with the status code

NoAddrsAvail or NoPrefixAvail.

• The server may not create a new binding. In this case, it sends an IA with the status code

NoBinding. The client responds to this with a REQUEST message.

If the client failed to renew, and T2 expires, it starts to rebind its addresses or pre�xes. To

do this, the client multicasts a REBIND message to all servers and relay agents. The server that

assigned the IAs to the client may receive the REBIND message and answer with a REPLY message

like to a RENEW message. Other servers may receive the REBIND message too. If they do not

want to update any IAs, they refrain from sending a REPLY message. If a server �nds an IA in a

REBIND message for which it has not assigned any addresses or pre�xes, it may choose to assign

12 See the variable DEC_MAX_RC in RFC8415 [9].

29

2.8 DHCPv6

Fig. 9: These message exchanges can be used by DHCPv6 clients to extend lifetimes of or relin-
quish addresses or IA_NA. This also applies to pre�xes of IA_PDs. Addresses of IA_TA
may follow this too, but they can not extend their preferred lifetimes and do not have T1
or T2 values. There can be Relay Agents involved between client and servers, which are
not shown here. This is described in more detail in 2.8.7.

new addresses or pre�xes. This should only be done if the server supports the rapid commit

message exchange.

Upon receiving a RENEW or REBIND message, a server may inform a client that some of its

addresses are not appropriate for the link on which they are used by updating the corresponding

lifetimes to 0 using the REPLY message.

Once a client knows it will no longer use an address or pre�x (e.g. because it is about to shut

down), it can inform the server by sending a RELEASE message. The client includes all and only

the addresses or pre�xes it wants to relinquish in the RELEASE message. The server con�rms that

using a REPLY message.

If a client wants to know whether its addresses are still appropriate for the links, it can ask

a server by multicasting a CONFIRM message containing the addresses in question. The servers

respond with a REPLY message that approves or rejects the addresses with a single Status Code

option.

30

2.9 Redundant Service Instances

2.8.8 Server-Triggered Client Recon�guration

A DHCPv6 server can initiate a message exchange by unicasting a RECONFIGURE message to

a client. The server learns the address of the client from previous message exchanges. Using

the Recon�gure Message option, it can specify whether the client should answer with a RENEW,

REBIND or INFORMATION-REQUEST message. Thereby, the server can trigger an update of the

Identity Associations and other con�guration information at the client.

The client will ignore all RECONFIGUREmessages after it has received one until it has completed

the requested message exchange.

To protect clients against malicious RECONFIGURE messages, the server is required to authen-

ticate its RECONFIGURE message using the Recon�guration Key Authentication Protocol speci�ed

in RFC8415 [9].

The client uses the Recon�gure Accept option in SOLICIT and REQUEST messages to let the

server know whether it will accept RECONFIGURE messages. Likewise, the server should include

the Recon�gure Accept option in answers to that messages, to inform the client of whether it

intends to send RECONFIGURE messages.

2.9 Redundant Service Instances

As the desired con�guration mechanism for IPv6 nodes is planned to serve many clients across

multiple data centers, avoiding service interruptions and providing the service fast become re-

quirements. Therefore, the following sections clarify terms concerning high availability and

loadbalancing.

2.9.1 High Availability

The term high availability refers to the goal to provide a service without any interruption. The

duration of interruption is called downtime. (See [48].)

In order to reduce downtime, a service needs to tolerate faults. There are various types of

fault tolerance (see [49]).

One option is to connect clients to other, functioning servers in the event that the current

server fails. Such a maneuver is called a failover. If the new server has not served clients until

then, it is called a standby server. If the failover can be done without considerable downtime, it

is said to be a hot standby server. Otherwise, if the standby server requires preparation before

serving clients, it is called a cold standby server. If the servers have hot standby servers in

di�erent geographic locations, they are said to be georedundant. (See [48], [50].)

There are many other aspects to be considered when aiming for high availability (see [50] for

example). However, this work does not intend to cover all of them, but rather focus on what can

be achieved using redundant service instances.

2.9.2 Loadbalancing

The term loadbalancing refers to the distribution of workload across multiple distributed in-

stances of a service (see [51], [52]). The workload can be measured in various ways, for example

31

2.9 Redundant Service Instances

in CPU load or network bandwidth usage (see [49]).

Loadbalancing can be used to pursuit di�erent goals (see [52]), some of which are listed below.

• The service latency is the delay at the client between sending a message and receiving

a matching answer. It can be improved by reducing the network latency which in turn

can be improved by moving server and client closer together (in terms of geography and

network topology). Loadbalancing can help to reduce network latency by routing tra�c to

the closest service instance.

• Loadbalancing is crucial to make a service scalable. Duboc et al. [53] found that the term

scalability is poorly de�ned and attempted to de�ne it as �a quality of software systems

characterized by the causal impact that scaling aspects of the system environment and

design have on certain measured system qualities as these aspects are varied over expected

operational ranges�. This general de�nition is not practical for the much more limited

scope of this work. In this context, scalability is considered to be the ability to increase the

number of requests the service can handle by adding new service instances. By distributing

the workload, loadbalancing enables a service to scale beyond the capabilities of a single

service instance.

• If provided with the capability to detect the failure of a service instance, loadbalancing can

also provide failovers.

2.9.3 Anycast Using BGP

The Border Gateway Protocol (BGP, see RFC4271 [54]) is a path-vector routing protocol that is

used to exchange IPv4 and IPv6 routing information between routers. BGP is the predominant

routing protocol of the Internet and is heavily used in the networks of the United Internet AG.

A BGP router learns BGP routes from its con�guration and other BGP routers. A BGP route

consists of a target IP pre�x, the address of the next router (next-hop) and more information

(e.g. a �cost�). The BGP router collects all that information in its Routing Information Base

(RIB). A RIB often contains multiple BGP routes for a single target IP pre�x. Based on that,

the BGP router decides which BGP route to write in the Forwarding Information Base (FIB).

The FIB contains for each target IP pre�x usually exactly one next-hop address, because is used

to actually forward IP packets.

BGP can be leveraged to create anycast tra�c (see �gure 2) across many links by con�guring

appropriate route information. This can be used as a failover or loadbalancing mechanism.

In a failover con�guration, multiple BGP routes are con�gured in the RIB such that one at a

time is preferred (e.g. using di�erent costs). When a failure happens (e.g. because the next-hop

becomes unavailable), the route is removed from the RIB and the optimal route is recalculated

and updated in the FIB.

In a loadbalancing con�guration, multiple BGP routes are con�gured in the RIB and in the

FIB. An algorithm (e.g. round-robin) must be con�gured to select one next-hop address for each

packet that needs to be routed. This way of selecting a next-hop address is called Equal Cost

Multi Path (ECMP) routing.

32

2.9 Redundant Service Instances

As the destination host may change any time per IP packet, anycast based on BGP should

only be used for connections that consist of a single request and reply (e.g. DNS queries) or such

that do not last for long.

2.9.4 IPv6 Link-Scope Anycast

Neighbor Advertisement messages have a �ag called Override. This toggles, whether the recipient

of the message should remove other link-layer address from its cache. If the Override �ag is not

set, the recipient will continue to use the link-layer address of the �rst Neighbor Advertisement

it received. To avoid congestion, such Neighbor Advertisements should be delayed by a random

amount of time, with a �xed upper bound.

This makes not-deterministic link-scope anycast addresses possible. It can be regarded as a

sort of hot-standby redundancy mechanism where the active side is randomly chosen per client

whenever Neighbor Advertisements are sent.

33

RIPE NCC

ARIN
APNIC
AFRINIC

LACNIC

Fig. 10: The IANA allocates the IPv4 and IPv6 address space to these �ve Regional Internet
Registries. (see [55], image source: [56])

3 Evaluation of a Migration to IPv6-only

This section highlights problems of IPv4 in general and discusses a migration from networks that

only use IPv4 to networks that only use IPv6 (�IPv6-only�). This general consideration is applied

to the usecases of the United Internet AG which are speci�ed in section 1.1.

3.1 The Problem: IPv4 Address Exhaustion

The allocation of IP addresses is made hierarchically. The Internet Assigned Numbers Author-

ity (IANA) is the organization which has the ultimate authority on the IP address allocation.

The IANA distributes the entire address space in big blocks among the �ve Regional Internet

Registries (RIRs, see �gure 10), which in turn allocate slices of their parts to Local Internet

Registries (LIRs). Eventually, an Internet Service Provider (ISP) can get globally unique IP

addresses and con�gure them on its computers (users). [55]

The IANA has allocated 3 707 764 736 addresses (86%) of the IPv4 address space to RIRs

[57]. All remaining addresses are reserved for special purposes. All of the �ve RIRs have in turn

allocated (almost) all of their addresses to LIRs. The RIR RIPE NNC has completely run out

of IPv4 addresses [58], as did ARIN [59]. AFRINIC is allocating from a �nal /11 IPv4 address

pool [60]. LACNIC allocates at most a /22 IPv4 address block per member from a �nal address

pool which is expected to drain on 2020-09-27 [61]. APNIC allocates at most a /23 IPv4 address

block per member [62].

Hence, the IPv4 address space should be considered exhausted.

3.1.1 Mitigation: Network Address Translation (NAT)

Since there are not enough addresses to give each computer a unique or even multiple unique

addresses, the uniqueness cannot be ful�lled. Special address ranges have been de�ned where the

uniqueness may be violated [7]. Networks within that address ranges still need to have unique

addresses, but other networks with the same addresses may exist (overlapping address spaces).

34

3.1 The Problem: IPv4 Address Exhaustion

In the style of the IPv6 addressing architecture (see section 2.3.2), such networks will here be

called zones of non-global scope. They have gained extensive usage.

To route IPv4 packets between zones of non-global scope, a mechanism called Network Ad-

dress Translation (NAT) was standardized. RFC2663 [63] speci�es terminology around varia-

tions of NAT. The variations have in common to change addresses in IPv4 headers so that they

are valid within the zone to which they are routed. This is done by routers that connects zones.

For the endpoints of the communication the NAT is �transparent�.

RFC2663 di�erentiates between packet �ow and session �ow, which both indicate the direc-

tion of IPv4 tra�c with respect to an interface. The former is the direction of a single packet,

the latter the direction of a session, which is de�ned to be a �set of tra�c that is managed as a

unit for translation�.

Mapping a Single Address to Many A �Network Address Port Translation� (NAPT) is a

variation of NAT that is like a power strip: It translates a single address into multiple. The side

of the NAPT with the single address is named external, while the other side is named private.

Figure 11 shows an example for a network with NAPT.

To identify to which of the multiple addresses tra�c needs to be translated, NAPT alienates

address space from transport layer protocols (see table 2). TCP [15] and UDP [14] port numbers,

as well as ICMPv4 [30] query identi�ers13 are used for target identi�cation. The number of

possible addresses in the transport layer protocol becomes an upper bound for the number of

sessions that is shared among the addresses on the private side of the NAPT.

Session �ow is only allowed in the direction from the private to the external side, meaning

the external side cannot initiate sessions. Therefore, the NAPT router needs to track the state

of sessions.

Patching Address Collisions The NAT variation �Twice NAT� translates source and destination

addresses of IPv4 headers. It allows session �ow in both directions. When the same addresses

occur in both networks between which tra�c is desired, Twice NAT can help. Each network

needs a special DNS server that maps all domains of targets in the other network to the address

of the Twice NAT router.

3.1.2 Service Di�erentiation on Upper Layer Protocols

Instead of requiring more IPv4 addresses, services can be made available over a single address

and be di�erentiated at a higher level protocol (e.g. using TCP ports or HTTP URLs). But this

requires to run all services on the same node, which might not be reasonably possible in practice

due to the required resources.

13 ICMPv4 is de�ned to be at the network layer. But because it is transmitted in the payload of IPv4, it needs
to be treated like a transport protocol in a NAPT environment.

35

3.1 The Problem: IPv4 Address Exhaustion

Fig. 11: Fictional example for communication via NAPT: The router doing the NAPT alters
addresses in the IPv4 headers. Thereby the two nodes (the circles) on the private side
are seen as a single IPv4 address. The router distinguishes the connections by altering
the TCP ports too.

36

3.2 Connecting IPv6 Nodes With IPv4 Nodes

Fig. 12: These mechanisms for exchanging data between IPv6 and IPv4 nodes are explained in
section 3.2.

3.2 Connecting IPv6 Nodes With IPv4 Nodes

There are many mechanisms that ease the migration to IPv6. A migration can be done network

per network. IPv6 can be enabled while IPv4 is still operational. However, before moving to an

IPv6-only network, the used upper-layer software needs to be examined for compatibility with

IPv6. The support of IPv6 is common nowadays but should not be taken for granted.

Connectivity at the network layer between IPv6 and IPv4 nodes can be established using

various mechanisms, which are described hereafter and shown in �gure 12. Such connectivity is

desired in most cases, as not all nodes support IPv6.

• Dual-Stack means to use IPv6 and IPv4 by the same node at the same time (see [64]).

In that case they need to decide which protocol to use when. Dual-Stack nodes can be

con�gured to use Happy Eyeballs, which is an algorithm for choosing IPv6 or IPv4 if both

are available (see [65]). The algorithm attempts to establish a connection using both IPv6

and IPv4, gives IPv6 a head start and then only uses the �rst successfully established

connection. This gives IPv6 preference, but provides a quick failover to IPv4 in case IPv6

does not work.

A Dual-Stack node can be used as proxy for certain upper layer protocols (e.g. HTTP,

see [66]). A proxy uses an upper layer protocol on behalf of other nodes, which makes it

possible to translate the upper layer protocol between IPv6 and IPv4.

• Con�guring nodes with IPv6 and disabling IPv4 (�IPv6-only�) is an alternative to Dual-

Stack. In this setup, IPv6-only nodes would not be able to communicate with nodes that

use only IPv4.

37

3.3 What IPv6 Does Di�erently Than IPv4

� NAT64 is a mechanism to translate tra�c between IPv4-only and IPv6-only hosts (see

[67]). A router running NAT64 must be connected to IPv6 and IPv4 (dual-stack).

NAT64 is intended to be used in conjunction with DNS64 (see [68]), which extends

an DNS server to generate AAAA records from A records such that IPv6-only nodes will

send tra�c to IPv4-only nodes to those generated addresses. They are routed to a

node performing NAT64, which translates the tra�c to IPv4 (and back, for replies).

DNS64 works �ne until the authoritative nameserver cryptographically secures its

DNS records using DNSSEC (see [69]). Then, a resolver that validates DNSSEC will

reject the AAAA records generated by the DNS64 server (or the DNS64 server will not

attempt to generate AAAA records), because the DNS64 server lacks the authority to

add records. Linkova described this DNSSEC issue and found that, depending on the

DNS64 implementation and the resolver, up to 94% of the Alexa 1M websites would

not be available through NAT64 with DNS64 (see [70]).

� Another way to connect node in an IPv6-only network to an IPv4 node is to tunnel

(e.g. an IPsec VPN) a IPv4 connection through the IPv6-only network. The IPv4

target must be either within the tunnel or a dual-stack node needs to route the IPv4-

tra�c from the tunnel to an IPv4 network.

� A connection between two IPv4 nodes over an IPv6-only network is also possible using

464XLAT (see [71]). This translates all IPv4 packets to IPv6 packets and back, to

transport the IPv4 packet over an IPv6 network.

3.3 What IPv6 Does Di�erently Than IPv4

This section discusses how IPv6 di�ers from IPv4 and whether it should be preferred over IPv4.

3.3.1 Solving the Address Exhaustion

IPv4 has the big problem of having not enough unique addresses. This led to parsimonious

address allocation, which hinders the scalability of networks. Further, public IPv4 addresses

became �nancially expensive. For example, there are IP-capable computers available that are

cheaper than a public IPv4 address (see [72]). Often, merging multiple separate networks requires

NAT or renumbering the nodes, because the address ranges overlap. With the vast address space

of IPv6, those problems will virtually never occur.

IPv6 [5] o�ers a quite trivial solution to the IPv4 address exhaustion: It extends the address

length. Instead of 32 bit, IPv6 addresses are 128 bit long.

IPv6 addresses are so long, there will be enough addresses forever (assuming they are used

as expected by the current standards). This can be illustrated in various ways (see e.g. [73]).

For example, assuming the entire IPv4 address space were consumed at a constant rate from the

year of the de�nition of IPv4 until the year when the �rst RIR ran out of addresses (see [4], [59]):

232IPv4 addresses

minutes between 1981 and 2015
=

232IPv4 addresses

1.788 · 107minutes
≈ 240.2

IPv4 addresses

minute
(3)

38

3.3 What IPv6 Does Di�erently Than IPv4

At 10 times that rate, allocating IPv6 addresses since the big bang14 could have been satis�ed

with only half of the IPv6 address size:

log2

(
10 · 240.2 IPv6 addresses

minute
· 7.2 · 1015minutes

)
≈ 63.91 (4)

This calculation makes extreme simpli�cations. But it should give an idea of how vast the

IPv6 address space is.

3.3.2 Abolishing NAT

NAT is useful, because it �xes the problem that every computer can get an address. But it can

not maintain address uniqueness. Thereby NAT is rather treating the symptoms than the cause.

IPv6 abolishes the need for NAT. Simply by having enough addresses available, they do not need

to be reused, which was the main motivation for using NAT. There are several more reasons to

avoid NAT (also see [75]):

• NAT increases the complexity of a network, which makes the operation costlier and more

prone to human errors.

• Especially NAPT operates stateful, because it needs to track the state of sessions. If the

router doing the NAPT looses its state (e.g. due to a failover to a new NAPT router), the

sessions will loose connection.

• NAPT alienates address space from transport layer protocols. This blurs the border be-

tween the OSI layers and makes the transport layer address space shared among the nodes

on the private side of the NAPT.

• A UDP connection does not have a state on its own. To determine what is a UDP session,

timers or information from even higher level protocols have to be used.

3.3.3 Other Improvements

In contrast to IPv4, IPv6 does not reserve the last address of every network for broadcasting

tra�c to it. As the usual network size allocates 64 bits to identify hosts, reserving one addresses

would not reduce the number of available addresses noticeably. But it makes using the network

easier. IPv6 replaces broadcast with multicast. Every node can join multicast groups, and tra�c

to a multicast address is routed to all members of that group. The multicast addresses are

allocated from a dedicated range of IPv6 addresses. Every node joins a multicast group together

with its neighbors, which e�ectively provides a link-scope broadcast.

The IPv6 header has a �xed length of 40 bytes. (The IPv4 header has a variable length.)

Optional information is implemented using extension headers, which are additional headers ap-

pended after the IPv6 header. This enables more e�cient processing.

IPv6 has no checksum. Because the lower and higher layers already (can) validate the in-

tegrity, there is no need to repeat this in IPv6. In the UDP, the originally optional checksum

was made mandatory.

14 Assuming the big bang was 7.2 · 1015minutes ≈ 13.8 · 109years ago, see [74].

39

3.3 What IPv6 Does Di�erently Than IPv4

IPv6 routers no longer need to handle fragmentation, this is now the duty of the endpoints

of the communication.

3.3.4 Conclusions

IPv6 introduces many changes, most prominently the extension of the address length. The

changes a�ect the way IPv6 is used (e.g. no NAT, multiple addresses per interface, SLAAC).

This in turn requires network administrators to learn and implement the new behavior.

There are network administrators of large networks that chose to migrate to IPv6-only. For

example, Microsoft is migrating its campus networks to IPv6-only (see [76]). Their motiva-

tions include having enough addresses available, avoiding overlapping address spaces (such from

RFC1918) and avoiding the operational complexity of Dual-Stack. The problems they encoun-

tered when attempting to move to IPv6-only include lack of supported features by individual

vendors and people not understanding IPv6 or not prioritizing the migration to it.

The IT infrastructure of the federal administration of Germany aims to migrate to IPv6-only

networks (see [77]). The IPv4 address exhaustion and the worldwide migration towards IPv6 are

named as justi�cation.

Considering the usecases PXE-DHCP and RMC-DHCP (see section 1.1), the requirements

can be narrowed down. The nodes in these groups are predictable, so vendor support for IPv6

only needs to be assured for a limited amount of device types. The nodes in those groups can

reach everything they need directly via company-internal networks or via a Dual-Stack proxy.

Thus, they could be migrated to IPv6-only without needing NAT64 and DNS64, an IPv4-in-IPv6

tunnel or Dual-Stack.

The United Internet AG is currently running into issues because merging IPv4 networks

of di�erent businesses requires renumbering nodes because of duplicate IPv4 addresses. Also

some IPv4 networks outgrow their size, meaning some nodes are left without address, until more

addresses are allocated to the network. Enlarging a network sometimes requires renumbering

nodes, because the neighboring addresses are already allocated.

In sum, a migration to IPv6-only network is advisable, especially in the long run.

40

4 Stateful DHCPv6 and Redundancy Issues

This section studies issues that may occur when operating multiple stateful DHCPv6 servers for

the same RMC-DHCP clients (see section 1.1.2). The focus lies on leasing Identity Associations

for non-temporary addresses (IA_NA, see section 2.8.7) to the clients. The DHCPv6 servers

have to create and delete DNS records according to their knowledge of the address state and

hostname of the client. Consistency of other stateful or stateless con�guration information is not

analyzed to reduce the scope of work. The standard policy for handling inconsistent stateless

con�guration information is mentioned in section 2.6.

Section 4.1 explains how knowing about the assignment of an address to a node is di�cult.

Section 4.2 goes into detail about possible issues when maintaining DNS records for RMC-DHCP

clients. A caching policy for those records is proposed in section 4.3. Several methods to operate

multiple redundant DHCPv6 servers are investigated in section 4.4. Mechanisms to synchronize

state between multiple DHCPv6 servers are not speci�ed here because they are implementation-

dependent.

4.1 Knowing That an Address Is Assigned

The Internet Protocol version 6 requires its addresses to be unique across their scope. ICMPv6

includes the algorithm Duplicate Address Detection (DAD, see 2.4.1) to ensure the uniqueness

of an addresses among the nodes on the link. DAD is not completely reliable, but the chances

of not detecting an address that is already in use are low.15 This algorithm must be performed

before an address becomes valid, regardless of the used con�guration mechanism. Hence, having

the same address in the same zone twice (or more) is unlikely.16

It should be noted that DAD can only be used by nodes at the questioned link and for

addresses con�gured on interfaces. DHCPv6 servers and authoritative nameservers maintain

lists of addresses that may di�er from the actual addresses present at a link. A DHCPv6 client

will inform the server if DAD reports a duplicate address, so the server can update its information.

The DHCPv6 server could then update the authoritative nameserver appropriately.

Because an entire DHCPv6 server could fail, or the message transmission between DHCPv6

server and client, the information about the addresses at the server may become (partially)

invalid. The same could be said about the synchronization from the DHCPv6 server to the

authoritative nameservers, but that falls out of scope for this work. Therefore, the following

sections analyze how the information at the DHCPv6 servers can be kept up to date when

operating multiple servers.

4.2 Di�culties When Altering DNS Records

This sections investigates some possible problems concerning DNS records for RMC-DHCP

clients. Figure 13 provides an overview. It is assumed that multiple redundant DHCPv6 servers

15 DADmight incorrectly indicate uniqueness if the interfaces connected to the link change while DAD is running.
16 Algorithms for choosing addresses (e.g. for SLAAC or DHCPv6) should generate di�erent addresses for

di�erent interfaces. Otherwise, they could produce duplicate addresses. Those could be detected with DAD, but
could be avoided by the algorithm.

41

4.2 Di�culties When Altering DNS Records

Fig. 13: This shows some problems concerning DNS records of RMC-DHCP clients and in what
circumstances they might occur. Some client-initiated events (blue boxes) will lead with
certain constraints (arrows) to problems (red/yellow boxes). Orange arrows indicate
that multiple servers are involved. The red boxes represent persistent problems, the
yellow box stands for a temporary problem. This diagram is explained in section 4.2.
The numbers in the diagram match the numbers in that section. The events �incorrect
address becomes invalid� and �correct address becomes invalid� can happen in multiple
situations.

42

4.2 Di�culties When Altering DNS Records

assign temporary or non-temporary addresses to clients and update DNS records (AAAA and PTR)

accordingly.17 The records for a client may get into these problematic states:

invalid The records point to a wrong target. This should be avoided entirely as it undermines

trust in the correctness of the DNS records.

missing The records should be con�gured, but are not. A record is not supposed to be in this

state for long because it impacts the availability of the client.

stale The records point to a target that no longer exists. Such records should be removed

eventually to reduce obsolete information.

The following situations, numbered like in �gure 13, will bring DNS records into one of the

named problematic states:

1. Every time the server assigns a new address to the client, the client has to perform Duplicate

Address Detection. If a duplicate address is detected, the client sends a DECLINE message

to the server. It attempts by protocol default four times to transmit the message.18 The

server would con�rm that with a REPLY message. If the server does not get the DECLINE

message, it will falsely assume that the address is now assigned to the client and create

or update the DNS records accordingly. Because the client can not be reached under the

address, the DNS records are invalid. A server could miss DECLINEmessages if a redundancy

mechanism transmitted the messages to a di�erent server that ignored them because the

Server Identi�er option did not contain its DUID. If the server receives a DECLINE message

after it created or updated the DNS records, those would be temporarily invalid until the

server reverts the change. After declining an address, a client will probably request a new

address which would lead to situation number 3.

2. If a client requests a new address using the rapid commit mechanism, multiple servers could

assign di�erent addresses to the client without awaiting con�rmation. Because they do not

know which address the client chose, they are unable to determine the address to which

the DNS records need to point. Without special implementation-dependent behavior of

client and server, an invalid record might end up in the nameservers. If the valid lifetime

of the address assigned to the client outlasts the valid lifetime of the address for which

DNS records exist (perhaps because the client extended the lifetime), the DNS records will

get deleted and thereby become missing. If vice-versa the address of the client becomes

invalid �rst, the DNS records become stale.

3. If a client requests an address from server A, and then a second address from server B

during the valid lifetime of the �rst address to replace it, server A will not know about

the second address. This information could be synchronized between the servers, but this

scenario assumes it is not. The client might request a new address because it moved to

17 The anticipated infrastructure also requires CNAME records that are added and removed together with the AAAA
records. Because CNAME, AAAA and PTR records are created, updated or deleted together, they are simply referred
to as DNS records in the remainder of this section.
18 See variable DEC_MAX_RC in RFC8415 [9].

43

4.2 Di�culties When Altering DNS Records

a new link with a di�erent pre�x. When updating the DNS records, server B has these

options:

(a) If server B assumes the existing DNS records belong to a di�erent client because of a

duplicate address or FQDN, it should refrain from updating the DNS records, which

would leave them valid for the existing client but invalid for the new client of server

B. Indeed encountering a di�erent client is unlikely, because duplicate addresses are

prevented using DAD and FQDNs are formed in the intended usecase using serial

numbers. Solving a duplicate address or FQDN could require manual intervention.

Because in this scenario the existing and new clients are identical, the DNS records

simply become invalid. Like in issue 2, depending on whether the old or new address

becomes invalid �rst, the DNS records end up in the missing or stale state.

(b) If server B assumes the existing DNS records point to the same client, it updates them

to the new address. If the existing DNS records would actually belong to a di�erent

client (which is unlikely, as stated before), they would become invalid for that. When

the valid lifetime of the address of either the existing or new client expires �rst, the

DNS records will be deleted and become missing for the other. The DNS records will

also become missing when the clients are the same and the valid lifetime of the old

address expires, because server A will delete the DNS records, unbeknownst the still

valid new address. Therefore, when a valid lifetime expires, a server should assert the

DNS records match the address known to it, before deleting them.

4. This issue is similar to the one before, but a valid lifetime extension is missed instead

of a new address assignment. With multiple redundant servers, server A could become

temporarily unavailable. During that downtime, server B could receive a RENEW or REBIND

message through which the client extends the valid lifetime of an address. If server A

becomes available again after that, it should be informed about the updated lifetime. If

that does not happen, server A will eventually assume that the valid lifetime expired,

whilst the client and server B know that it did not expire yet. Server A will delete the

DNS records, putting them in the missing state.

This issue exists likewise with DHCPv4 and has been observed in the current DHCPv4

architecture of the United Internet AG.

5. When a server does not receive a RELEASEmessage, it will refrain from deleting DNS records

although it should, which creates stale records. A server could miss RELEASE messages like

DECLINEmessages if a redundancy mechanism transmitted the messages to a di�erent server

that ignored them because the Server Identi�er option did not contain its DUID. This issue

is resolved when the valid lifetime expires, because that triggers the server to delete the

DNS records.

4.2.1 DHCID RR

A goal of the DHCPv6 architecture for RMC-DHCP clients is to maintain a one-to-one rela-

tionship between client and FQDN. The actual relationship is more complex: An address of an

44

4.3 Di�culties When Querying DNS Records (Caching)

interface of a client is mapped to (using a PTR record) and from (using an AAAA record) an FQDN.

The RFCs 4701 [78], 4702 [79], 4703 [80] and 4704 [81] specify a mechanism to avoid some

issues with maintaining DNS records for DHCP clients. They de�ne a new DNS resource record

type called DHCID that creates a direct mapping between a client and an FQDN.

The DNS resource record DHCID stores a cryptographic hash (SHA-256) of an DHCP client

identi�er and the matching FQDN. The RFC speci�es three possible types of client identi�ers:

The DHCPv6 client DUID, the DHCPv4 Client Identi�er option value (see [82]) and the con-

catenated htype and chaddr �elds of a DHCPv4 DHCPREQUEST message. As per RFC4361[43]

nodes should use the same DUID for the DHCPv4 Client Identi�er option as for the DHCPv6

Client Identi�er option, which enables to use a single DHCID record for DHCPv4 and DHCPv6.

Regarding the issues discussed earlier, the DHCID record does only a�ect issue number 3. The

DHCID record helps to preserve any preexisting DNS records of other clients when attempting to

create new DNS records.

4.2.2 Conclusions

The analyzed issues show the necessity to synchronize the information about the assigned ad-

dresses and their valid lifetimes when operating multiple redundant stateful DHCPv6 servers.

The redundancy mechanism should take into account that the servers will only accept messages

having their DUID, if they include a Server Identi�er option.

Only one server at a time should o�er the rapid commit mechanism.

When the valid lifetime of an address expires, the server should assure the address is the

target of the DNS records before deleting them.

The DHCID record type could be used to detect duplicate addresses or duplicate FQDNs and

to help investigate further issues.

4.3 Di�culties When Querying DNS Records (Caching)

In the RMC-DHCP setup the DNS records should be reported by DNS resolvers from when the

associated leased address becomes valid up until it becomes invalid.

The previous section explains scenarios in which such changes may result in invalid, missing or

stale DNS records at the authoritative nameserver(s). Even if those problems were solved, a DNS

resolver still may experience invalid, missing or stale DNS records due to cached information.

This section analyzes for how long caching of DNS records should be permitted.

4.3.1 Record-Changing Events

A DNS resolver should update its cache whenever the information could have changed. The time

until the next change to a DNS record may happen is governed by the following events:

• When the valid lifetime of an address expires, its DNS records get deleted. The valid

lifetime may be prolonged, but not shortened. DNS records that are cached beyond that

event are stale or even invalid, when the FQDN gets a new address assigned.

45

4.3 Di�culties When Querying DNS Records (Caching)

commit 345841
expiry 70001
release 23

Tab. 8: The number of ISC-DHCPD events logged for RMC-DHCP clients by servers of the
current DHCPv4 architecture within a 72 hour interval. See section 4.3.2 and section 6.1.

• The RELEASE message can be sent by a DHCPv6 client to relinquish an address. After the

address was released, a server will remove the DNS records. Because this is initiated by

the client, the server can not predict, when it will happen. A cached DNS record would be

stale then. After the release, a server may reassign the address. The cached DNS record

would then become invalid, which is more problematic.

• When a new address gets assigned to a client (perhaps because it moved to a di�erent

link), the DNS records get updated. The time between the assignment and the change,

as well as the likelihood of such a change depends on the individual usage and can not be

predicted in general. A cached DNS record would be invalid after the update.

4.3.2 Practical Relevance of RELEASE Messages

To estimate how often a DHCPv6 client will release an address before expiration, the current

DHCPv4 architecture for RMC-DHCP clients is investigated. The events logged by the servers

within a 72 hour time interval between 2020-06-06 and 2020-06-09 are analyzed using the man-

agement service database (described in section 6.1). Only a fraction of the events are RELEASE

messages, as shown in table 8. Of those, the delay between commit and release event varies

across the common lifetime of 24 hours. Two leases were released after over 22 hours, four after

almost 12 hours and twelve after less than two minutes. The delay could not be calculated for

�ve more release events, because the corresponding commit events were not in the dataset.

During the 72 hours of the considered data, at least three IPv4 addresses were reused for

di�erent clients.

The data shows that release events are rather seldom. Nonetheless, they should be expected

any time during the valid lifetime. The considered data does not contain enough release events

to suggest a most frequent time after which release messages can be expected. It is questionable

whether the IPv4-speci�c behavior of the RMC-DHCP clients will be the same for IPv6.

4.3.3 DNS TTL recommendation

DNS relies heavily on caching records. The Time To Live (TTL) is attached to every DNS record

and speci�es the number of seconds that record may be cached (see [11]). It should be maximized

to reduce the tra�c on the nameservers while it should be minimized to let the clients pick up

changes (and deletions, with lesser priority) as soon as possible.

A deletion may occur after the valid lifetime expires or upon a RELEASE message. If the

client does not request a new address, the DNS records can only change after a deletion. The

likelihood of a DHCPv6 server directly reassigning an address to a new client depends on the

address allocation policy of the server implementation.

46

4.4 Issues With Failovers and Synchronization

The DHCPv6 standard permits a server keeping track of previously assigned addresses to

reassign them to the same client in the future (compare RFC8145 section 18.3.7 [9]). Thus, a

server could be programmed to avoid reassigning addresses for which a RELEASE message was

received until the valid lifetime would have expired. Considering the vast address space in the

intended /64 networks, it may not be necessary to reuse addresses ever. Then, the only limit to

the TTL would be the permitted age of stale DNS records. However, this approach is presumably

limited in practice by storage complexity.19

The current DHCPv4 architecture creates DNS records for RMC-DHCP clients with a TTL

of 10 minutes.

As a recommendation, the TTL should be set to the minimum of the following three values:

• the valid lifetime

• the time after which an unassigned address may be reallocated to a di�erent client

• the time after which the client may have been assigned a new address

The �rst two values can be con�gurable in a DHCPv6 server implementation.

To assess this recommendation, the number of DNS requests at the authoritative nameservers,

the number of stale records and the storage and performance impact on the DHCPv6 servers

should be monitored while trying di�erent TTL values. This assessment is left for future work.

4.4 Issues With Failovers and Synchronization

This section analyzes what issues might arise when a DHCPv6 server goes down and a second

server takes over.

The described event of switching to another server is analyzed for the following synchroniza-

tion scenarios:

no-synchronization The servers synchronize nothing. They have identical con�guration, but know

nothing about each other. Their DUIDs and lease information di�er.

lease-synchronization The serves synchronize their leases but have di�erent DUIDs.

comprehensive-synchronization The servers synchronize everything. The con�guration, lease in-

formation and server DUID is ensured to always be the same on all servers using an

out-of-scope protocol between the servers.

The messages sent by clients can be distributed in various ways across the available servers. The

following three mechanisms are analyzed:

multiple-servers The clients see both servers. Multicast tra�c goes to both servers.

dynamic-routing The servers share the same IPv6 address. Tra�c to that address is dynamically

routed using BGP. Multicast tra�c goes only to that address.

19 Storing for each address of a /64 network whether it has been assigned using an uncompressed bit array would
require two exbibytes of storage.

47

4.4 Issues With Failovers and Synchronization

comprehensive-
synchronization

lease-synchronization no-synchronization

multiple-servers

multicasted messages
are processed multiple
times by the same

logical server
messages with Server Identi�er option
will not be processed after a failover

dynamic-
routing no transmission issues

DUID-mapping

Tab. 9: Depending on how bindings are synchronized between DHCPv6 servers and how mes-
sages sent by clients are distributed to them, the messages sent by clients might not
get processed (appropriately). The issues with comprehensive-synchronization and
multiple-servers are explained in section 4.4.1, the issues with lease-synchronization or
no-synchronization in section 4.4.2.

DUID-mapping A Relay Agent performs loadbalancing across the servers. Each client DUID is

mapped to a �xed server. If that server fails, the mapping changes to a di�erent server.

Multicast tra�c goes only to the selected server.

Those synchronization scenarios and client message distribution mechanisms could be com-

bined arbitrarily, but some combinations can disturb the message exchanges. Table 9 provides

an overview over the combinations and the following sections explain the issues with them.

4.4.1 Too Much Redundancy

The messages SOLICIT, CONFIRM and REBIND are always multicasted by clients. If they are

received by multiple servers that use comprehensive-synchronization, they might run into internal

con�icts or each sends the same message to the client. The behavior of the clients and servers

in such a con�guration is implementation-dependent.

4.4.2 Refusing Client Messages

The messages DECLINE, RELEASE, RENEW and REQUEST always need to include a Server Identi�er

option. INFORMATION-REQUEST messages can include a Server Identi�er option. A server will

ignore all messages that contain a Server Identi�er option, but not its DUID. This can happen

when multiple servers use di�erent DUIDs but are seen by the client as a single server.

When a server ignores a client's message, the client will retransmit the message. When

and how often a client retransmits a message depends on the message type (see section 2.8.4).

Until the retransmission terminates and the client proceeds without Server Identi�er option (e.g.

because it is restarting the con�guration process using a SOLICIT message), it can not complete

the con�guration process. The client behavior after vainly transmitting messages with Server

Identi�er option is explained hereafter.

DECLINE A client should proceed to use other con�guration information and any addresses that

were not detected as duplicate. The client can restart the con�guration process by mul-

ticasting a SOLICIT message. This is independent of the success of the DECLINE-REPLY

48

4.4 Issues With Failovers and Synchronization

message exchange. The consequences of a missed DECLINE message are explained from a

server perspective in section 4.2.

INFORMATION-REQUEST When responding to a RECONFIGURE message, the client copies the server

DUID from that to the INFORMATION-REQUEST message. Thus, the client will not get new

con�guration, when the server does not accept this DUID. Regardless of the attempted

recon�guration message exchange, the client may send an INFORMATION-REQUEST message

without Server Identi�er option some time later. A server can indicate the duration after

which the client should do so using the Information Refresh Time option in REPLY messages

in response to INFORMATION-REQUEST messages.

RELEASE The con�guration of a client does not depend on the success of a RELEASE-REPLYmessage

exchange, so no further actions are required by the client. The impact of a missed RELEASE

message is explained from a server perspective in section 4.2.

RENEW When T2 expires, the client will switch from sending RENEW messages with Server Iden-

ti�er option to multicasting REBIND messages to all servers, to achieve the same. If the

other servers are not able or willing to extend the lifetimes of the leases, the leases expire

eventually and the client has to restart the con�guration process using a SOLICIT message.

REQUEST After the client gives up retransmitting REQUESTmessages, its actions are implementation-

dependent. It may attempt sending REQUEST messages to other servers if known, restart

the con�guration procedure by sending SOLICIT messages or simply remain not con�gured.

4.4.3 Conclusions

A DUID stands for a single server (or client). Multiple servers should only use the same DUID,

if multicasted tra�c gets routed to only one instance.

If client messages get dynamically routed (e.g. using BGP) or dynamically relayed (e.g. using

DUID-mapping) to a single server instance, the server instances should share a common DUID.

Otherwise, they will not get processed (until the client addresses all available servers). This

delays the con�guration of the client or noti�cation of the server that an address is not used by

the client.

49

5 DHCPv6 Server Implementations Running on Linux

This section presents some DHCPv6 server implementations. The requirements for selecting an

implementation to be used at the United Internet AG are discussed in section 5.1. A list of

possible implementations is presented in section 5.2 and explained in section 5.2.

5.1 Criteria for Selecting Implementations

To reduce the scope of work and not require proprietary operating systems or hardware, only

implementations that can be installed on Linux are considered. To be able to understand and

modify the implementation, it should be distributed under an open source license (see [83]).

The implementation must conform to the newest DHCPv6 standard (RFC8415) for the fea-

tures it implements. The implementation must be �stable enough� for a production environment,

meaning the software quality and feature completeness.

The implementation should be...

• under active support (recent changes of the source code, commercial support, popularity).

• implementing the required options for the other con�guration information speci�ed in ta-

ble 12.

• o�ering some interface to create, update and delete DNS records according to the leases.

• able to share or replicate its state (assigned Identity Associations including lifetimes) with

other instances.

• o�ering interfaces to monitor the properties speci�ed in section 6.3.5.

• able to update its con�guration without downtime.

• capable of handling a su�cient number of client messages per second.

• able to reserve an address for a con�gurable time before assigning it to a di�erent client.

• able to vary the lifetimes of addresses and T1 and T2 variables of Identity Associations to

distribute the renewal attempts of clients over time.

• supporting the DHCPv6 recon�gure mechanism (see section 2.8.8).

5.2 Open Source DHCPv6 Servers Running on Linux

The implementations of DHCPv6 servers listed in table 10 are discussed in this section.

The development of Dibbler has been o�cially discontinued. The software project wide-

dhcpv6 has shown no activity in the last �ve years. Therefore, both are not suitable for a

production environment.

The implementations ISC DHCPDv6 and Kea are developed by the Internet Systems Con-

sortium, Inc. (ISC). The former is popular and integrated in various other software, but it does

50

5.2 Open Source DHCPv6 Servers Running on Linux

name support / development activity license reference

coredhcp last commit 2020-08-09,
documentation says �This is still
a work-in-progress�

MIT (dhcp libary:
BSD-3-Clause)

[84], [85]

dhcp6 last change 2019-03-11 MIT [86]

dhcplb last commit 2020-07-18, in use
by Facebook

MIT (dhcp libary: BSD-3-clause) [85], [87]

dhcpy6d last commit 2020-07-24, last
release on the same date

GPL 2.0 [88]

Dibbler not maintained GPL 2.0 [89]

dnsmasq last commit 2020-07-19, last
release on the same date

choosable: GPL 2 or GPL 3 [90]

ISC
DHCPDv6

only security �xes, no new
features, developers recommend
to use Kea

MPL 2.0 [91]

jagornet
dhcp

last change 2020-05-12, last
release 2016-07-07

GPL 3 [92]

Kea commercial support, purchasable
features

MPL 2.0 [93]�[95]

ndhs last change 2018-02-09 BSD-2-clause [96]

wide-
dhcpv6

last change 2015-07-13 BSD [97]

Tab. 10: Those DHCPv6 server implementations are open source and can be run on Linux. The
times of the most recent changes are based on the public version control repositories
and were researched on 2020-08-28.

51

5.2 Open Source DHCPv6 Servers Running on Linux

name language implemented RFCs
partially
implemented RFCs

DHCPv4
server

DHCPv6
relay agent

coredhcp Go not documented yes no

dhcp6 Go 3315 no no

dhcplb Go not documented yes yes

dhcpy6d Python
3315, 5908, 4291,
3646

no no

Dibbler C++ 3315, 2136, 2845 no

dnsmasq C not documented yes yes

ISC
DHCPDv6

C

3315, 3319, 3646,
3898, 4075, 4242,
4280, 4580, 4649,
4704, 4994, 2136,
4941, 3633

4701, 4702, 4703,
5942

yes yes

Kea C++
3319, 3646, 4242,
6422, 7550, 7598

3315, 3633, 3736,
4649, 4703, 4704,
6334, 6603, 6939,
8357, 8415

yes no

jagornet
dhcp

Java
3315, 3633, 3646,
3736, 4703, 4704

yes no

ndhs C++ not documented yes no

wide-
dhcpv6

C
3315, 3319, 3633,
3646, 4075, 4242

no yes

Tab. 11: Feature comparison of the DHCPv6 server implementations listed in table 10. The
di�erentiation between �implemented RFCs� and �partially implemented RFCs� is based
on statements of the respective documentation. The column �DHCPv4 server� indicates
whether the implementation includes or is accompanied by a DHCPv4 server. The
column �DHCPv6 relay agent� indicates whether the implementation includes or is
accompanied by a DHCPv6 relay agent.

52

5.2 Open Source DHCPv6 Servers Running on Linux

not support con�guration changes without downtime and the ISC currently only provides secu-

rity updates, no new features. The ISC recommends to use their other implementation instead.

(See [98])

Kea appears to be the most comprehensive implementation of DHCPv6 (RFC8415 and re-

lated standards). The Kea DHCPv6 server implements a failover and a loadbalancing mechanism,

which is described in section 6.2.2. The Kea software includes a command line interface named

perfdhcp, which can generate DHCPv6 messages to benchmark the performance of a DHCPv6

server (see [99]).

The servers coredhcp and dhcplb are build on the same DHCPv6 library written in Go.

53

6 Con�guration Service Architecture Evaluation

This section explains the DHCPv4 architecture currently operated by the United Internet AG

(section 6.1), presents related work about DHCPv6 architectures (section 6.2) and proposes an

DHCPv6 architecture to provide con�guration for PXE-DHCP and RMC-DHCP clients at the

United Internet AG.

6.1 Current DHCPv4 Architecture

Currently, the United Internet AG operates an architecture of services that provides PXE-DHCP

and RMC-DHCP for IPv4 clients (DHCPv4). This architecture is illustrated in �gure 14 and

will be explained hereafter.

The clients communicate with DHCPv4 servers to obtain their con�guration. The servers

share an anycast address and appear as a single server to the clients.

The architecture can allocate addresses as needed or provide clients, identi�ed by their MAC

address, with unchanging addresses (��xed-address�).

The architecture is split up into a management service, a DHCP service and other services

that are out of scope for this work. An instance of the DHCP service can be either one of the

�avors PXE-DHCP or RMC-DHCP. Only in the latter case, DNS records are updated based on

DHCP leases. Apart from that, the �avors do not di�er.

6.1.1 Management Service

The management service consists of multiple services and the management service database

(msdb). This database contains a history of the events reported by the DHCP servers and

all necessary information to con�gure the DHCP servers.

Administrators can query the msdb using a web-frontend or HTTP API and thereby see for

example the active leases.

The DHCP service instances read their con�guration information from the msdb via a dedi-

cated HTTP API (�DHCP server con�guration API�). The con�guration is refreshed periodically

in the msdb by the msdb update service based on metadata of the asset management software

of the company and DIM. DIM (�DNS and IP Management� [100]) is an open-source software

developed by the United Internet AG that is used to manage IPv4 addresses, IPv6 addresses

and DNS records. For the scope of this work, the asset management software and DIM will be

regarded as black-box HTTP APIs.

6.1.2 DHCP Server Con�guration

Each DHCP service instance runs the DHCPv4 server implementation of the Internet Systems

Consortium, Inc. (ISC-DHCPD [91]), a database, a con�guration service and an event propaga-

tion service.

The con�guration of the ISC-DHCPD, including address pools and �xed assignments of

IPv4 addresses to MAC addresses, is updated periodically every half hour by the con�guration

service. This service fetches information from the DHCP server con�guration API, generates

54

6.1 Current DHCPv4 Architecture

Fig. 14: This is the software architecture currently used by the United Internet AG to supply
RMC-DHCP for IPv4 clients. Each box with dashed border represents one of multiple
redundant hosts. A host runs programs (boxes with solid borders) and databases (cylin-
ders). The redundant hosts are accessed via anycast addresses (using BGP). The arrows
are oriented to point from the one that initiates the communication. This architecture
is explained in section 6.1.

55

6.2 Related Work

DHCPv4 option

range (lower and upper IP address)
default lease time (seconds)
maximum lease time (seconds)
DNS search list
list of recursive DNS servers
netbios nameservers
dynamic DNS domain
boot image server (�next-server�)
boot image �lename (CPU architecture dependent)

Tab. 12: These options can be con�gured in the current service architecture (described in sec-
tion 6.1). They are managed in DIM and can be set per pool. A pool consists of IP
subnets, these options and other options. Only the range is a required attribute. The
dynamic DNS domain is appended to a hostname to form an FQDN for assigned ad-
dresses (in case of RMC-DHCP). Di�erent boot image �lenames can be speci�ed for
di�erent DHCP client CPU architectures.

con�guration �les and restarts the ISC-DHCPD to apply the changes. The information that can

be con�gured using the current architecture is listed in table 12.

An ISC-DHCPD reports the events commit, expiry and release into its DHCP server database.

This is a PostgreSQL database [101], which is run on the same host as the ISC-DHCPD for latency

and availability reasons.

The commit event is triggered every time the ISC-DHCPD assigns a client an address or

extends the time that address may be used. The expiry event is triggered whenever the lifetime

of a leased address expires without prolongation by the client. When the server marks an

allocated address as available again because it received a DHCPRELEASE message by a client, a

release event is triggered.

Those events are written into the local database as they occur. At most �ve seconds later, the

event propagation service attempts to copy the events to the msdb. If con�gured to do so (RMC-

DHCP), the event propagation service creates, updates or deletes DNS records appropriately by

using the DIM HTTP API when the assignment state of an address changes.

6.2 Related Work

This section presents related work to DHCPv6 in data centers. No scienti�c work directly

addressed to this topic was found during the research for this work. However, Facebook has

published details about how they use DHCPv6 in their data centers (see section 6.2.1) and the

Internet Systems Consortium has published work on how their DHCPv6 server implementation

Kea implements failover and loadbalancing mechanisms (see section 6.2.2).

6.2.1 DHCPv6 Deployment at Facebook

Facebook, Inc. is using DHCPv6 (and DHCPv4) as con�guration mechanism for IP nodes in

its production data centers (see [102]�[104]). They claim to use it for network booting and

out-of-band management interfaces, which precisely matches the client groups PXE-DHPC and

56

6.2 Related Work

Fig. 15: The deployment of the DHCP relay dhcplb used by Facebook, Inc., see section 6.2.1.
(image source: [87])

RMC-DHCP that are targeted in this work.

In a blogpost from 2019 [102], Facebook explains how their DHCP architecture evolved. They

started with the DHCP server ISC-DHCPD (see [91]), but moved away from that because altering

its con�guration requires a restart that reduces availability. Con�guration changes became more

frequent and eventually the ISC-DHCPDs were spending more time restarting than serving

tra�c.

After ISC-DHCPD they switched to Kea, because it enables to centralize the con�guration

data and execute custom code as speci�c events occur (�hooks�). Facebook ran multiple instances

of Kea and advertised them as a single anycast address using BGP. (see [102], [104])

However, that Anycast setup was not satisfying for Facebook, because the BGP anycast setup

did not distribute the tra�c evenly. To solve that, they developed a DHCP relay and named

it dhcplb (see [87]). This relay is capable of load-balancing the tra�c between multiple servers.

The server selection algorithms Round Robin and Modulo are implemented. The latter calculates

a hash of the DHCP client DUID and maps that to a server by taking the modulo of the hash.

Additionally, dhcplb allows A/B testing of servers by categorizing the servers into two groups

and selecting a group based on con�guration. Facebook runs dhcplb itself in multiple instances

that are accessed by an BGP anycast address. The DHCP clients reach the dhcplb instances

through another relay, as shown in �gure 15.

The next problem Facebook ran into was the single-threaded design of Kea. When Kea was

57

6.2 Related Work

hit with more tra�c than it could keep up with (that boundary is especially limited by calls to

other services), it started to drop packets. The developers of Kea have recently released a stable

version of Kea with multi-threading support (see [105]). Instead of waiting for that, Facebook

extended dhcplb to make it a DHCP server and replaced Kea with that. Obviously, dhcplb was

programmed with multi-threading support and could handle measurably more tra�c. Also, the

con�guration of dhcplb can be updated without downtime like ISC-DHCPD. (see [102])

Discussion The con�guration mechanism architecture of Facebook presumably serves a much

larger number of clients than the anticipated usecases at the United Internet AG. Copying their

infrastructure might provide their performance and scaling optimizations, but it might be overly

complex.

6.2.2 ISC High Availability Considerations

The Internet Systems Consortium, Inc. (ISC) develops the two DHCP server implementations

ISC-DHCPD [91] and Kea [93]�[95], both for DHCPv4 and DHCPv6.

The DHCPv4 implementation ISC-DHCPD does support a failover mechanism20, but the

DHCPv6 implementation of ISC-DHCPD does not. As the ISC shifted its resources from de-

veloping ISC-DHCPD to developing Kea, it is unlikely that this DHCPv6 implementation will

support a failover or loadbalancing mechanism in the future. In contrast, the Kea DHCPv6 (and

DHCPv4) implementation does support Kea-speci�c failover and loadbalancing mechanisms. (see

[107])

Therefore, the following sections only consider the Kea DHCPv6 server implementation.

Redundancy Features of Kea Kea (as of version 1.8.0) supports running servers without re-

dundancy mechanism, in loadbalancing mode, in hot-standby mode or in cold-standby (�backup�)

mode. Those redundancy mechanisms are explained in the Kea wiki by the developers for Kea

version 1.4.0 (see [108]) and are summarized hereafter.

Loadbalancing and failover is implemented for exactly two Kea servers. More servers may

be added in backup mode, which makes them synchronize the state of servers in hot-standby or

loadbalancing mode. The backup servers are not answering to DHCP client messages and need

manual con�guration to do so. The two servers not in backup mode automatically detect and

react to a failure of their partner server.

Kea servers may share a database in which leases are stored. To avoid just shifting the

single point of failure to the database, the database should be operated with multiple redundant

instances.

If the servers do not share a database for leases, they exchange updates about the leases over

a Kea-speci�c API. This is done synchronously, meaning the answer to the client is sent after the

update at the other server was successful. If the update failed, no answer is sent to the client.

The documentation of Kea 1.8.0 explains the decision against implementing the DHCPv6

failover standard RFC8156 [109] in Kea:

20 ISC-DHCPD implements the DHCP Failover Protocol draft [106] as a DHCPv4 failover mechanism.

58

6.3 Recommended Con�guration Mechanism Architecture

�The DHCPv6 failover standard (RFC 8156) was published, but it is complex, di�cult to use,

has signi�cant operational constraints, and is di�erent than its v4 counterpart. Although it may

be useful for some users to use a 'standard' failover protocol, it seems that most Kea users are

simply interested in a working solution which guarantees high availability of the DHCP service.

Therefore, the Kea HA hook library derives major concepts from the DHCP Failover protocol

but uses its own solutions for communication and con�guration.� (see [110])

The redundant Kea servers appear as individual DHCPv6 servers to the clients. Only if a

client uses multicast (e.g. for SOLICIT messages), all servers receive the message. Each server

determines, whether it is meant to process a message. If not, the message is dropped. This

matches the redundancy mechanism described in section 4.4 as lease-synchronization.

Servers in cold-standby mode never respond to DHCP client messages. In hot-standby mode,

only one of the two servers is con�gured to process messages. In loadbalancing mode, the decision

to process a message is based on a client identi�er, such that each server is assigned half of the

possible client identi�ers. The mapping from client identi�er to server is implemented according

to the DHC Loadbalancing algorithm as speci�ed by RFC3074 [111]. This matches the DUID-

mapping method described in section 4.4. If one server detects the failure of the other, the

remaining server begins processing all messages.

Failure Detection Two Kea servers can detect their partners failure using a Kea-speci�c proto-

col. They exchange heartbeat messages over that. If one partner vainly waits for a con�gurable

time for a heartbeat message, it starts analyzing the client messages that would be handled by

the other server. If enough (a con�gurable amount) client messages exceed a con�gurable value

in the �elapsed time� DHCPv6 option21, the other server is considered to have failed.

Recovery from Failure Once a server becomes available again, it can take up its work without

manual con�guration.

If the communication between the servers fails, the continue to operate but do not synchronize

their leases. To recover from that, they need manual con�guration.

Discussion Having only two servers in a redundancy relationship limits the way con�guration

service architectures can be built for larger services (e.g. when providing DHCPv6 for more than

two data centers).

When a client gets mapped to a di�erent server, its messages will be ignored if they contain a

Server Identi�er option (whose value will di�er from the DUID of the new server). This problem

is described in section 4.4.2.

6.3 Recommended Con�guration Mechanism Architecture

This section proposes an architecture of services to con�gure IPv6 nodes at the United Internet

AG. It is intended to replace the existing DHCPv4 architecture because a migration to IPv6-only

is desirable (see section 3.3.4).

21 When using DHCPv4, Kea examines the �secs� �eld.

59

6.3 Recommended Con�guration Mechanism Architecture

The PXE-DHCP and RMC-DHCP node groups are treated di�erently because of di�erent

requirements. The architecture for stateful DHCPv6 (for RMC-DHCP) is illustrated in �gure 16,

and the architecture for stateless DHCPv6 (for PXE-DHCP) in �gure 17.

Both architectures include redundancy and loadbalancing mechanisms to meet the high avail-

ability requirements of the anticipated usecases.

The implementation of the proposed architecture and the interaction of the individual parts

with each other and with the existing infrastructure is not speci�ed here, because the available

implementations are not studied thoroughly enough.

6.3.1 Con�guration Mechanism for PXE-DHCP Nodes

PXE-DHCP nodes require addresses and the other con�guration information listed in table 12.

Because they require more than just DNS con�guration, SLAAC alone is not su�cient. Either

SLAAC in combination with stateless DHCPv6 or stateful DHCPv6 could be used. The former

could be achieved with a less complex architecture, because knowledge about the valid assignment

of an address does not need to be synchronized from a node to a central database. Using SLAAC

for PXE-DHCP nodes would come at the cost of not having a central database of their addresses.

Since the intended usecase is to boot an operating system for a temporary maintenance, having

a central database may not outweigh the bene�ts of a simpler architecture. In the following, it

is assumed that SLAAC in combination with stateless DHCPv6 servers is desired for the PXE-

DHCP nodes. Otherwise, the architecture for RMC-DHCP (perhaps without maintaining DNS

records) could be used for PXE-DHCP nodes as well.

6.3.2 Con�guration Mechanism for RMC-DHCP Nodes

The RMC-DHCP nodes require DNS records pointing to their addresses, meaning the addresses

must be stored at the authoritative DNS nameservers. Thus, a �central database� is needed

for the RMC-DHCP clients, and consequently, stateful DHCPv6 servers. The stateful DHCPv6

servers should assign addresses to the clients and create DNS records accordingly. They should

also create DHCID records (see section 4.2.1). The stateful DHCPv6 servers should not o�er the

rapid commit mechanism to avoid consistency issues.

6.3.3 Routers and Relay Agents per Link

The clients in the considered usecases are distributed across many links, such that operating

multiple DHCPv6 servers per link (redundancy requirement) is not feasible. At least one relay

agent per link with clients is necessary. Those are called �client� relay agents here. If multiple

relay agents are installed at a single link, only one of them should relay DHCPv6 messages at a

time. They listen to the multicast address ff02::1:2 and would thereby create redundant copies

of the messages sent by clients. Because the clients send their messages to the multicast address,

IPv6 anycast is not possible. The duplicated messages could be �ltered out by following relay

agents (if any) and the servers based on the transaction-id and the Elapsed Time option. Maybe

a link-layer protocol could be used to repurpose the IPv6 multicast address into an anycast

address.

60

6.3 Recommended Con�guration Mechanism Architecture

The �client� relay agents are con�gured in a per-usecase (e.g. RMC-DHCP) uniform way.

They implement RFC6939 to add the link-layer address of the client to the message (see sec-

tion 2.8.2 and [42]). Servers should not accept unicast connections from clients (meaning not

to send a Server Unicast option) to force them through the relay agents which add the Client

Link-Layer Address option. They relay the messages to an IPv6 anycast address (which can

be implemented using BGP). In case of PXE-DHCP, that address is advertised by DHCPv6

servers, but in case of RMC-DHCP, the address is advertised by �loadbalancing� relay agents

(see section 6.3.4).

In contrast to DHCPv4, routers need special con�guration for DHCPv6. They need to send

ICMPv6 Router Advertisement messages with the �ags listed in table 13. Those ensure that

PXE-DHCP clients use SLAAC to obtain their addresses and stateless DHCPv6 to obtain other

con�guration information, and RMC-DHCPv6 clients use DHCPv6 for both.

In case direct communication (not via a router) between clients at the same link is desired,

the IPv6 pre�x of the network needs to be advertised as on-link in the Router Advertisement

messages. Considering the usecases, direct communication seems to be unnecessary. Thus, the

routers could conceal the on-link property and block tra�c between neighbored clients.

6.3.4 State Synchronization and Message Distribution

The DHCPv6 servers in the PXE-DHCP architecture operate only in stateless mode, which is

why no special synchronization is needed and the architecture can be build simpler. The servers

of the RMC-DHCP architecture operate in stateful mode and need to implement comprehensive-

synchronization (synchronization of lease information and DUIDs, see section 4.4).

The �loadbalancing� relay agents receive client messages from �client� relay agents and send

them to DHCPv6 servers. They distribute them based on DUID-mapping (see section 4.4). They

keep a connection with each DHCPv6 server they relay to, to track whether they are operational.

That way, a �loadbalancing� relay agent maintains a list of operational servers, and updates the

mapping of clients to servers when that list changes.

6.3.5 Monitoring

In order to successfully operate the proposed service architecture, detailed knowledge about its

state is required. At least the following properties should be monitored:

• The values of Elapsed Time options sent by clients, per server instance.

• The number of messages sent and received by servers and relay agents, grouped by the

message type and Status Code option value, if applicable.

• The number of DNS requests at the authoritative nameservers that query the zones man-

aged by the DHCPv6 servers.

61

6.3 Recommended Con�guration Mechanism Architecture

�ag PXE-DHCP RMC-DHCP

managed address con�guration 0 1
other con�guration 1 1
router 1 1
pre�x-speci�c: on-link 0 0
pre�x-speci�c: autonomous address-con�guration 1 0

Tab. 13: Proposed values for �ags of Router Advertisement messages.

Fig. 16: This is the software architecture proposed for stateful DHCPv6, see section 6.3. The
purple relay agent and router are deployed per link with clients. The blue services are
deployed in other quantities. The gray services are out of scope. The �IPv6 con�guration
mechanism management service� con�gures and monitors the other colored components.

62

Fig. 17: This is the software architecture proposed for stateless DHCPv6, see section 6.3. For a
description of this �gure also see �gure 16.

7 Results, Discussion and Future Work

The following sections summarize this work and propose future work.

7.1 Scope and Requirements

This work analyzes con�guration mechanisms for IP addresses and other con�guration informa-

tion for two groups of nodes: PXE-DHCP and RMC-DHCP. The former describes nodes that

need IP addresses and certain other con�guration information to retrieve operating system images

over the network and boot them (using the PXE standard). The latter group comprises remote

management controllers of servers which need in addition to the requirements of PXE-DHCP

nodes DNS records that point the IP addresses assigned to the nodes.

This work investigates what con�guration mechanisms for IPv4 and IPv6 are available and

how they work, namely DHCPv4, DHCPv6 and SLAAC (see section 2).22

7.2 Bene�ts of Migrating to IPv6

The necessity of a migration from IPv4 to IPv6 is evaluated in section 3. Solving the IPv4 address

exhaustion, simplifying the network architecture by avoiding NAT and e�ciency improvements

are the main technical arguments in favor of IPv6. The increasing worldwide popularity of IPv6

22 There are other con�guration mechanisms which are left out here to focus on those relevant for the considered
usecases.

63

7.3 Con�guration Mechanisms for IPv6 Nodes

and the issues with IPv4 in practice (caused by the limited address space) show that a migration

of the considered node groups to IPv6-only is desirable.

Apart from four times lager addresses, IPv6 di�ers from IPv4 signi�cantly. The protocol

ICMPv6 is a mandatory part of IPv6 and de�nes much of its behavior. It not only implements

functionality equivalent to ICMPv4, but also the mapping between link-layer addresses and IPv6

addresses, the assignment of IPv6 addresses to interfaces and much more.

7.3 Con�guration Mechanisms for IPv6 Nodes

Multiple con�guration mechanisms can be used simultaneously for assigning IPv6 addresses and

other con�guration information. Those mechanisms do not need to be aware of each other, be-

cause each node is required to assure the uniqueness of an address using ICMPv6 messages before

assigning it to an interface. The mechanisms can be either stateless or stateful. A stateful mech-

anism requires in contrast to a stateless mechanism to synchronize node-speci�c con�guration

information to another node. For example, if a server maintains a database of IPv6 addresses

for assigning them to nodes, it would be a stateful con�guration mechanism.

The Stateless Address Auto Con�guration (SLAAC) enables IPv6 nodes to assign themselves

addresses without any dependency on other nodes.23 Implementing SLAAC is compulsory for

IPv6 nodes.

The DHCPv6 protocol is quite similar to DHCPv4 at �rst glance, but di�ers in various

details, as described in section 2.8. It can be used without assigning addresses, which makes

it a stateless con�guration mechanism. It can be used to assign addresses and delegate entire

address pre�xes, in which case it becomes stateful. Clients are no longer identi�ed using their

link-layer address, but instead by a dedicated number generated per client. A message exchange

can optionally be triggered by a server.

Information like router addresses and whether a speci�c pre�x is on-link is con�gured using

ICMPv6 messages sent by routers.

7.4 Resilient Stateless Con�guration

IPv6 addresses and other con�guration information can be con�gured in a stateless manner using

Router Advertisement messages sent by routers (SLAAC) and stateless DHCPv6 servers. Because

no client-speci�c information needs to be synchronized between them and they are queried using

well-known multicast addresses, multiple instances can be run without further con�guration.

7.5 Redundant Stateful DHCPv6 Servers

Maintaining consistency is a complex task when operating multiple redundant stateful DHCPv6

servers, especially when DNS records that point to leased addresses are wanted. Multiple sce-

narios that lead to inconsistency are analyzed in section 4. Issues arrive when a client changes

its state (e.g. it gets a new address) but this does not get synchronized to all servers.

23 To be able to assign addresses of a scope greater than link link-local, an IPv6 node needs to learn an
appropriate address pre�x from an ICMPv6 message sent by a router.

64

7.6 Results of the DHCPv6 Server Implementation Evaluation

7.6 Results of the DHCPv6 Server Implementation Evaluation

Eleven open source implementations of DHCPv6 servers that run on Linux are found (see sec-

tion 5). Some requirements for using those at the United Internet AG are speci�ed, but not

explored in detail. Future work could provide a more in-depth study of those.

7.7 The Proposed Service Architecture

For comparison, the current DHCPv4 architecture and related work concerning con�guration of

IPv6 nodes is presented (see section 6.1 and section 6.2).

Two architectures that provide IPv6 con�guration for PXE-DHCP and RMC-DHCP nodes

are proposed, one for each client group (see section 6.3). Both are designed to be entirely redun-

dant. The architecture for PXE-DHCP nodes uses SLAAC, Router Advertisement messages and

stateless DHCPv6 servers. The architecture for RMC-DHCP nodes uses Router Advertisement

messages and stateful DHCPv6 servers. Both architectures use DHCPv6 relay agents, the latter

also such that anycast messages from clients based on their DUID to di�erent servers.

7.8 Discussion of Methodology And Future Work

7.8.1 Theory and Practice

The topic of this work is approached from a theoretical perspective. The protocols are studied

and discussed in detail. Less work has been done on the evaluation of available implementations

for deploying the proposed service architecture. Also the behavior of the existing nodes that

need to be con�gured was not investigated. Those could deviate from the standards in form of

missing features, not compliant implementations or additional implementations that o�er other

opportunities.

The proposed service architecture does neither specify what implementations to use, nor has

it been tested.

Future work could test a range of values for the preferred lifetime and valid lifetime of

addresses, T1 and T2 variables of Identity Associations and the TTL of DNS records. For those

values should be tested how fast nodes receive their con�guration, how fast the whole architecture

propagates the state and how much network tra�c and server resources that requires.

7.8.2 Performance

Due to the large number of nodes that need con�guration, the tra�c they might cause in a

worst-case scenario could be overwhelming the infrastructure or at least require unnecessarily

many resources. The many variables of the protocols (e.g. address lifetimes) could be tweaked

and tested to �nd an optimum where the con�guration information is refreshed often enough

but also not congesting the infrastructure. If necessary, the performance of DHCPv6 server

implementations (in terms of processed messages per time) could be benchmarked to evaluate

implementations and �nd bottlenecks.

65

7.8 Discussion of Methodology And Future Work

7.8.3 Security

The study of the protocols and the proposed service architecture do not contain any security

considerations. Because the IPv6 addresses (and link-layer addresses) authenticate a node, spe-

cial attention should be paid to ensure their correct assignment and no rogue assignments. Also,

rogue DHCPv6 messages or Router Advertisement messages could spread malicious information.

The Secure Neighbor Discovery protocol could be useful for this purpose (see [112], [113]).

7.8.4 More Literature

There is currently no standard that de�nes the synchronization of redundant DHCPv6 servers.

However, RFC6853 [114] discusses the deployment of redundant DHCPv6 servers and RFC7031

[115] speci�es requirements for designing a failover protocol between them. These documents are

not considered in this work due to a lack of time.

Likewise, RFC3449 [116] (�IPv6 Host Con�guration of DNS Server Information Approaches�)

and RFC4472 [117] (�Operational Considerations and Issues with IPv6 DNS�) can be consulted

for a discussion of con�guration mechanisms for DNS con�guration information for IPv6 nodes.

7.8.5 Economics

This work does not make an economic evaluation of the proposed con�guration mechanism

architecture.

7.8.6 Consistency

Methods to evaluate the consistency of given stateful con�guration mechanism architectures

could be addressed in future research.

66

REFERENCES

References

[1] R. Callon, The Twelve Networking Truths, RFC 1925, Apr. 1996. doi: 10.17487/RFC1925.

[Online]. Available: https://rfc-editor.org/rfc/rfc1925.txt.

[2] International Telecommunication Union, Measuring digital development Facts and �gures

2019. ITUPublications, 2019, isbn: 978-92-61-29521-9. [Online]. Available: https://www.

itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2019.pdf.

[3] M. Winther, Tier 1 ISPs: What They Are and Why They Are Important, External Publi-

cation of IDC Information and Data, white paper, May 2006. [Online]. Available: https:

//www.gin.ntt.net/wp-content/uploads/2020/01/IDC_Tier1_ISPs.pdf.

[4] Internet Protocol, RFC 791, Sep. 1981. doi: 10 . 17487 / RFC0791. [Online]. Available:

https://rfc-editor.org/rfc/rfc791.txt.

[5] D. S. E. Deering and B. Hinden, Internet Protocol, Version 6 (IPv6) Speci�cation, RFC

8200, Jul. 2017. doi: 10.17487/RFC8200. [Online]. Available: https://rfc-editor.org/

rfc/rfc8200.txt.

[6] S. Coty, Where is IPv1, 2, 3,and 5? Feb. 11, 2011. [Online]. Available: https://blog.

alertlogic.com/blog/where-is-ipv1,-2,-3,and-5/ (visited on 08/27/2020).

[7] M. Cotton, L. Vegoda, R. Bonica, and B. Haberman, Special-Purpose IP Address Reg-

istries, RFC 6890, Apr. 2013. doi: 10.17487/RFC6890. [Online]. Available: https://rfc-

editor.org/rfc/rfc6890.txt.

[8] R. Droms, Dynamic Host Con�guration Protocol, RFC 2131, Mar. 1997. doi: 10.17487/

RFC2131. [Online]. Available: https://rfc-editor.org/rfc/rfc2131.txt.

[9] T. Mrugalski, M. Siodelski, B. Volz, A. Yourtchenko, M. Richardson, S. Jiang, T. Lemon,

and T. Winters, Dynamic Host Con�guration Protocol for IPv6 (DHCPv6), RFC 8415,

Nov. 2018. doi: 10.17487/RFC8415. [Online]. Available: https://rfc-editor.org/rfc/

rfc8415.txt.

[10] Intel Corporation, Preboot Execution Environment (PXE) Speci�cation, Version 2.1, Sep.

1999. [Online]. Available: https://web.archive.org/web/20110524083740/http:

//download.intel.com/design/archives/wfm/downloads/pxespec.pdf.

[11] Domain names - concepts and facilities, RFC 1034, Nov. 1987. doi: 10.17487/RFC1034.

[Online]. Available: https://rfc-editor.org/rfc/rfc1034.txt.

[12] D. T. Narten, T. Jinmei, and D. S. Thomson, IPv6 Stateless Address Autocon�guration,

RFC 4862, Sep. 2007. doi: 10.17487/RFC4862. [Online]. Available: https://rfc-editor.

org/rfc/rfc4862.txt.

[13] Information technology - open systems interconnection - basic reference model: The basic

model, ITU-T Recommendation X.200, Telecommunication Standardization Sector of In-

ternational Telecommunication Union, Jul. 1994. [Online]. Available: https://www.itu.

int/rec/T-REC-X.200-199407-I.

67

https://doi.org/10.17487/RFC1925
https://rfc-editor.org/rfc/rfc1925.txt
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2019.pdf
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/FactsFigures2019.pdf
https://www.gin.ntt.net/wp-content/uploads/2020/01/IDC_Tier1_ISPs.pdf
https://www.gin.ntt.net/wp-content/uploads/2020/01/IDC_Tier1_ISPs.pdf
https://doi.org/10.17487/RFC0791
https://rfc-editor.org/rfc/rfc791.txt
https://doi.org/10.17487/RFC8200
https://rfc-editor.org/rfc/rfc8200.txt
https://rfc-editor.org/rfc/rfc8200.txt
https://blog.alertlogic.com/blog/where-is-ipv1,-2,-3,and-5/
https://blog.alertlogic.com/blog/where-is-ipv1,-2,-3,and-5/
https://doi.org/10.17487/RFC6890
https://rfc-editor.org/rfc/rfc6890.txt
https://rfc-editor.org/rfc/rfc6890.txt
https://doi.org/10.17487/RFC2131
https://doi.org/10.17487/RFC2131
https://rfc-editor.org/rfc/rfc2131.txt
https://doi.org/10.17487/RFC8415
https://rfc-editor.org/rfc/rfc8415.txt
https://rfc-editor.org/rfc/rfc8415.txt
https://web.archive.org/web/20110524083740/http://download.intel.com/design/archives/wfm/downloads/pxespec.pdf
https://web.archive.org/web/20110524083740/http://download.intel.com/design/archives/wfm/downloads/pxespec.pdf
https://doi.org/10.17487/RFC1034
https://rfc-editor.org/rfc/rfc1034.txt
https://doi.org/10.17487/RFC4862
https://rfc-editor.org/rfc/rfc4862.txt
https://rfc-editor.org/rfc/rfc4862.txt
https://www.itu.int/rec/T-REC-X.200-199407-I
https://www.itu.int/rec/T-REC-X.200-199407-I

REFERENCES

[14] User Datagram Protocol, RFC 768, Aug. 1980. doi: 10.17487/RFC0768. [Online]. Avail-

able: https://rfc-editor.org/rfc/rfc768.txt.

[15] Transmission Control Protocol, RFC 793, Sep. 1981. doi: 10.17487/RFC0793. [Online].

Available: https://rfc-editor.org/rfc/rfc793.txt.

[16] LAN/MAN Standards Committee, IEEE Standard for Ethernet, IEEE-SA Standards

Board, Ed., IEEE Std 802.3-2018. Institute of Electrical and Electronics Engineers, Inc,

Jun. 2018, isbn: 978-1-5044-5090-4. doi: 10.1109/ieeestd.2018.8457469.

[17] D. M. Crawford, Transmission of IPv6 Packets over Ethernet Networks, RFC 2464, Dec.

1998. doi: 10.17487/RFC2464. [Online]. Available: https://rfc- editor.org/rfc/

rfc2464.txt.

[18] DoD Internet host table speci�cation, RFC 952, Oct. 1985. doi: 10.17487/RFC0952.

[Online]. Available: https://rfc-editor.org/rfc/rfc952.txt.

[19] V. Fuller and T. Li, Classless Inter-domain Routing (CIDR): The Internet Address As-

signment and Aggregation Plan, RFC 4632, Aug. 2006. doi: 10.17487/RFC4632. [Online].

Available: https://rfc-editor.org/rfc/rfc4632.txt.

[20] An Ethernet Address Resolution Protocol: Or Converting Network Protocol Addresses to

48.bit Ethernet Address for Transmission on Ethernet Hardware, RFC 826, Nov. 1982. doi:

10.17487/RFC0826. [Online]. Available: https://rfc-editor.org/rfc/rfc826.txt.

[21] A Reverse Address Resolution Protocol, RFC 903, Jun. 1984. doi: 10.17487/RFC0903.

[Online]. Available: https://rfc-editor.org/rfc/rfc903.txt.

[22] Bootstrap Protocol, RFC 951, Sep. 1985. doi: 10.17487/RFC0951. [Online]. Available:

https://rfc-editor.org/rfc/rfc951.txt.

[23] W. Wimer, Clari�cations and Extensions for the Bootstrap Protocol, RFC 1542, Oct. 1993.

doi: 10.17487/RFC1542. [Online]. Available: https://rfc-editor.org/rfc/rfc1542.

txt.

[24] J. K. Reynolds, BOOTP Vendor Information Extensions, RFC 1497, Aug. 1993. doi:

10.17487/RFC1497. [Online]. Available: https://rfc-editor.org/rfc/rfc1497.txt.

[25] B. Hinden and D. S. E. Deering, Internet Protocol, Version 6 (IPv6) Speci�cation, RFC

2460, Dec. 1998. doi: 10.17487/RFC2460. [Online]. Available: https://rfc-editor.

org/rfc/rfc2460.txt.

[26] D. S. E. Deering and B. Hinden, IP Version 6 Addressing Architecture, RFC 4291, Feb.

2006. doi: 10.17487/RFC4291. [Online]. Available: https://rfc- editor.org/rfc/

rfc4291.txt.

[27] B. Haberman, B. Zill, E. Nordmark, T. Jinmei, and D. S. E. Deering, IPv6 Scoped Address

Architecture, RFC 4007, Mar. 2005. doi: 10.17487/RFC4007. [Online]. Available: https:

//rfc-editor.org/rfc/rfc4007.txt.

[28] Broadcasting Internet datagrams in the presence of subnets, RFC 922, Oct. 1984. doi:

10.17487/RFC0922. [Online]. Available: https://rfc-editor.org/rfc/rfc922.txt.

68

https://doi.org/10.17487/RFC0768
https://rfc-editor.org/rfc/rfc768.txt
https://doi.org/10.17487/RFC0793
https://rfc-editor.org/rfc/rfc793.txt
https://doi.org/10.1109/ieeestd.2018.8457469
https://doi.org/10.17487/RFC2464
https://rfc-editor.org/rfc/rfc2464.txt
https://rfc-editor.org/rfc/rfc2464.txt
https://doi.org/10.17487/RFC0952
https://rfc-editor.org/rfc/rfc952.txt
https://doi.org/10.17487/RFC4632
https://rfc-editor.org/rfc/rfc4632.txt
https://doi.org/10.17487/RFC0826
https://rfc-editor.org/rfc/rfc826.txt
https://doi.org/10.17487/RFC0903
https://rfc-editor.org/rfc/rfc903.txt
https://doi.org/10.17487/RFC0951
https://rfc-editor.org/rfc/rfc951.txt
https://doi.org/10.17487/RFC1542
https://rfc-editor.org/rfc/rfc1542.txt
https://rfc-editor.org/rfc/rfc1542.txt
https://doi.org/10.17487/RFC1497
https://rfc-editor.org/rfc/rfc1497.txt
https://doi.org/10.17487/RFC2460
https://rfc-editor.org/rfc/rfc2460.txt
https://rfc-editor.org/rfc/rfc2460.txt
https://doi.org/10.17487/RFC4291
https://rfc-editor.org/rfc/rfc4291.txt
https://rfc-editor.org/rfc/rfc4291.txt
https://doi.org/10.17487/RFC4007
https://rfc-editor.org/rfc/rfc4007.txt
https://rfc-editor.org/rfc/rfc4007.txt
https://doi.org/10.17487/RFC0922
https://rfc-editor.org/rfc/rfc922.txt

REFERENCES

[29] M. Gupta and A. Conta, Internet Control Message Protocol (ICMPv6) for the Internet

Protocol Version 6 (IPv6) Speci�cation, RFC 4443, Mar. 2006. doi: 10.17487/RFC4443.

[Online]. Available: https://rfc-editor.org/rfc/rfc4443.txt.

[30] Internet Control Message Protocol, RFC 792, Sep. 1981. doi: 10.17487/RFC0792. [Online].

Available: https://rfc-editor.org/rfc/rfc792.txt.

[31] B. Cain, D. S. E. Deering, B. Fenner, I. Kouvelas, and A. Thyagarajan, Internet Group

Management Protocol, Version 3, RFC 3376, Oct. 2002. doi: 10.17487/RFC3376. [Online].

Available: https://rfc-editor.org/rfc/rfc3376.txt.

[32] W. A. Simpson, D. T. Narten, E. Nordmark, and H. Soliman, Neighbor Discovery for

IP version 6 (IPv6), RFC 4861, Sep. 2007. doi: 10.17487/RFC4861. [Online]. Available:

https://rfc-editor.org/rfc/rfc4861.txt.

[33] G. Kuijpers, J. Wiljakka, J. Arkko, H. Soliman, and J. A. Loughney, Internet Protocol

Version 6 (IPv6) for Some Second and Third Generation Cellular Hosts, RFC 3316, May

2003. doi: 10.17487/RFC3316. [Online]. Available: https://rfc- editor.org/rfc/

rfc3316.txt.

[34] D. S. E. Deering, B. Fenner, and B. Haberman, Multicast Listener Discovery (MLD) for

IPv6, RFC 2710, Oct. 1999. doi: 10.17487/RFC2710. [Online]. Available: https://rfc-

editor.org/rfc/rfc2710.txt.

[35] L. Costa and R. Vida, Multicast Listener Discovery Version 2 (MLDv2) for IPv6, RFC

3810, Jun. 2004. doi: 10.17487/RFC3810. [Online]. Available: https://rfc-editor.

org/rfc/rfc3810.txt.

[36] K. van den Hout, A. Koopal, and R. van Mook, Management of IP numbers by peg-

dhcp, RFC 2322, Apr. 1998. doi: 10.17487/RFC2322. [Online]. Available: https://rfc-

editor.org/rfc/rfc2322.txt.

[37] R. Droms, Stateless Dynamic Host Con�guration Protocol (DHCP) Service for IPv6, RFC

3736, Apr. 2004. doi: 10.17487/RFC3736. [Online]. Available: https://rfc-editor.org/

rfc/rfc3736.txt.

[38] J. P. Jeong, S. D. Park, L. Beloeil, and S. Madanapalli, IPv6 Router Advertisement Op-

tions for DNS Con�guration, RFC 8106, Mar. 2017. doi: 10.17487/RFC8106. [Online].

Available: https://rfc-editor.org/rfc/rfc8106.txt.

[39] A. Atlasis and E. Rey, �IPv6 Router Advertisement Flags, RDNSS and DHCP Con�ict-

ing Con�gurations � Operational & Security Implications,� ERNW Enno Rey Netzw-

erke GmbH, research rep. 1.0, Mar. 2015. [Online]. Available: https://www.ernw.de/

download/ERNW_Whitepaper_IPv6_RAs_RDNSS_DHCPv6_Conflicting_Parameters.pdf.

[40] S. Venaas and T. Chown, Rogue IPv6 Router Advertisement Problem Statement, RFC

6104, Feb. 2011. doi: 10.17487/RFC6104. [Online]. Available: https://rfc-editor.

org/rfc/rfc6104.txt.

69

https://doi.org/10.17487/RFC4443
https://rfc-editor.org/rfc/rfc4443.txt
https://doi.org/10.17487/RFC0792
https://rfc-editor.org/rfc/rfc792.txt
https://doi.org/10.17487/RFC3376
https://rfc-editor.org/rfc/rfc3376.txt
https://doi.org/10.17487/RFC4861
https://rfc-editor.org/rfc/rfc4861.txt
https://doi.org/10.17487/RFC3316
https://rfc-editor.org/rfc/rfc3316.txt
https://rfc-editor.org/rfc/rfc3316.txt
https://doi.org/10.17487/RFC2710
https://rfc-editor.org/rfc/rfc2710.txt
https://rfc-editor.org/rfc/rfc2710.txt
https://doi.org/10.17487/RFC3810
https://rfc-editor.org/rfc/rfc3810.txt
https://rfc-editor.org/rfc/rfc3810.txt
https://doi.org/10.17487/RFC2322
https://rfc-editor.org/rfc/rfc2322.txt
https://rfc-editor.org/rfc/rfc2322.txt
https://doi.org/10.17487/RFC3736
https://rfc-editor.org/rfc/rfc3736.txt
https://rfc-editor.org/rfc/rfc3736.txt
https://doi.org/10.17487/RFC8106
https://rfc-editor.org/rfc/rfc8106.txt
https://www.ernw.de/download/ERNW_Whitepaper_IPv6_RAs_RDNSS_DHCPv6_Conflicting_Parameters.pdf
https://www.ernw.de/download/ERNW_Whitepaper_IPv6_RAs_RDNSS_DHCPv6_Conflicting_Parameters.pdf
https://doi.org/10.17487/RFC6104
https://rfc-editor.org/rfc/rfc6104.txt
https://rfc-editor.org/rfc/rfc6104.txt

REFERENCES

[41] C. E. Perkins, B. Volz, T. Lemon, M. Carney, and J. Bound, Dynamic Host Con�guration

Protocol for IPv6 (DHCPv6), RFC 3315, Jul. 2003. doi: 10.17487/RFC3315. [Online].

Available: https://rfc-editor.org/rfc/rfc3315.txt.

[42] G. Halwasia, S. Bhandari, and W. Dec, Client Link-Layer Address Option in DHCPv6,

RFC 6939, May 2013. doi: 10 . 17487 / RFC6939. [Online]. Available: https : / / rfc -

editor.org/rfc/rfc6939.txt.

[43] T. Lemon and B. E. Sommerfeld, Node-speci�c Client Identi�ers for Dynamic Host Con�g-

uration Protocol Version Four (DHCPv4), RFC 4361, Feb. 2006. doi: 10.17487/RFC4361.

[Online]. Available: https://rfc-editor.org/rfc/rfc4361.txt.

[44] J. Neville. (Nov. 13, 2018). �Android does not support dhcpv6 and google 'won't �x'

that,� [Online]. Available: https://www.nullzero.co.uk/android-does-not-support-

dhcpv6-and-google-wont-fix-that/ (visited on 07/31/2020).

[45] (Dec. 9, 2014). �Issuetracker: Support for dhcpv6 (rfc 3315),� [Online]. Available: https:

//issuetracker.google.com/issues/36949085#comment66 (visited on 08/03/2020).

[46] J. Sanders, Android's lack of DHCPv6 support poses security and IPv6 deployment issues,

Android doesn't support dhcpv6, the most common management method for enterprise wi-

� deployments. �nd out why, and how to work around this problem. CBS Interactive Inc.,

Sep. 1, 2015. [Online]. Available: https://www.techrepublic.com/article/androids-

lack-of-dhcpv6-support-poses-security-and-ipv6-deployment-issues/ (visited

on 08/27/2020).

[47] B. Volz, Re: [dhcwg] [Technical Errata Reported] RFC8415 (6269), IETF mail archive,

Aug. 31, 2020. [Online]. Available: https://mailarchive.ietf.org/arch/msg/dhcwg/

IS955z1mhCjGuuWC4HCMkS75N2k/ (visited on 08/31/2020).

[48] Fujitsu Technology Solutions GmbH, Frequently asked questions on high availability, Jul.

2012. [Online]. Available: https://sp.ts.fujitsu.com/dmsp/Publications/public/

wp_faq-h-availability.pdf.

[49] G. P. Sarmila, N. Gnanambigai, and P. Dinadayalan, �Survey on fault tolerant � load

balancing algorithmsin cloud computing,� in 2015 2nd International Conference on Elec-

tronics and Communication Systems (ICECS), 2015, pp. 1715�1720.

[50] Bundesamt für Sicherheit in der Informationstechnik, Hochverfügbarkeitskompendium,

Version 1.6, Kapitel 5: Server. 2013, vol. Band B. [Online]. Available: https://www.bsi.

bund.de/SharedDocs/Downloads/DE/BSI/Hochverfuegbarkeit/BandB/B5_Server.

pdf?__blob=publicationFile&v=1.

[51] A. M. Alakeel, �A guide to dynamic load balancing in distributed computer systems,� In-

ternational Journal of Computer Science and Information Security, vol. 10, no. 6, pp. 153�

160, 2010.

[52] N. J. Kansal and I. Chana, �Cloud load balancing techniques: A step towards green com-

puting,� IJCSI International Journal of Computer Science Issues, vol. 9, no. 1, pp. 238�

246, 2012.

70

https://doi.org/10.17487/RFC3315
https://rfc-editor.org/rfc/rfc3315.txt
https://doi.org/10.17487/RFC6939
https://rfc-editor.org/rfc/rfc6939.txt
https://rfc-editor.org/rfc/rfc6939.txt
https://doi.org/10.17487/RFC4361
https://rfc-editor.org/rfc/rfc4361.txt
https://www.nullzero.co.uk/android-does-not-support-dhcpv6-and-google-wont-fix-that/
https://www.nullzero.co.uk/android-does-not-support-dhcpv6-and-google-wont-fix-that/
https://issuetracker.google.com/issues/36949085#comment66
https://issuetracker.google.com/issues/36949085#comment66
https://www.techrepublic.com/article/androids-lack-of-dhcpv6-support-poses-security-and-ipv6-deployment-issues/
https://www.techrepublic.com/article/androids-lack-of-dhcpv6-support-poses-security-and-ipv6-deployment-issues/
https://mailarchive.ietf.org/arch/msg/dhcwg/IS955z1mhCjGuuWC4HCMkS75N2k/
https://mailarchive.ietf.org/arch/msg/dhcwg/IS955z1mhCjGuuWC4HCMkS75N2k/
https://sp.ts.fujitsu.com/dmsp/Publications/public/wp_faq-h-availability.pdf
https://sp.ts.fujitsu.com/dmsp/Publications/public/wp_faq-h-availability.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Hochverfuegbarkeit/BandB/B5_Server.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Hochverfuegbarkeit/BandB/B5_Server.pdf?__blob=publicationFile&v=1
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Hochverfuegbarkeit/BandB/B5_Server.pdf?__blob=publicationFile&v=1

REFERENCES

[53] L. Duboc, D. Rosenblum, and T. Wicks, �A framework for characterization and analysis

of software system scalability,� in Proceedings of the the 6th joint meeting of the European

software engineering conference and the ACM SIGSOFT symposium on The foundations

of software engineering, 2007, pp. 375�384.

[54] Y. Rekhter, S. Hares, and T. Li, A Border Gateway Protocol 4 (BGP-4), RFC 4271, Jan.

2006. doi: 10.17487/RFC4271. [Online]. Available: https://rfc- editor.org/rfc/

rfc4271.txt.

[55] Internet Assigned Numbers Authority. (). �Number resources,� [Online]. Available: https:

//www.iana.org/numbers (visited on 06/09/2020).

[56] User:Sémhur, Regional internet registries world map, Jan. 2009. [Online]. Available: https:

//commons.wikimedia.org/wiki/File:Regional_Internet_Registries_world_map.

svg.

[57] Internet Assigned Numbers Authority, Iana ipv4 address space registry, The allocation

of Internet Protocol version 4 (IPv4) address space to various registries is listed here.

Originally, all the IPv4 address spaces was managed directly by the IANA. Later parts

of the address space were allocated to various other registries to manage for particular

purposes or regional areas of the world. RFC 1466 documents most of these allocations.,

Dec. 2019. [Online]. Available: https://www.iana.org/assignments/ipv4-address-

space/ipv4-address-space.xhtml.

[58] Réseaux IP Européens Network Coordination Centre. (Nov. 25, 2019). �The ripe ncc has

run out of ipv4 addresses,� [Online]. Available: https://www.ripe.net/publications/

news/about-ripe-ncc-and-ripe/the-ripe-ncc-has-run-out-of-ipv4-addresses

(visited on 06/09/2020).

[59] J. Curran. (Sep. 24, 2015). �Arin ipv4 free pool reaches zero,� American Registry for Inter-

net Numbers (ARIN), [Online]. Available: https://www.arin.net/vault/announcements/

2015/20150924.html (visited on 07/08/2020).

[60] African Network Information Centre (AFRINIC). (Apr. 14, 2020). �Afrinic enters ipv4

exhaustion phase 2,� [Online]. Available: https://afrinic.net/20200113-afrinic-

enters-ipv4-exhaustion-phase-2 (visited on 06/09/2020).

[61] Latin America and Caribbean Network Information Centre. (Jun. 10, 2020). �Phases of

ipv4 exhaustion,� [Online]. Available: https : / / www . lacnic . net / 1039 / 2 / lacnic /

phases-of-ipv4-exhaustion.

[62] Asia-Paci�c Network Information Centre. (2020). �Ipv4 exhaustion,� [Online]. Available:

https://www.apnic.net/manage-ip/ipv4-exhaustion/ (visited on 07/08/2020).

[63] M. Holdrege and P. Srisuresh, IP Network Address Translator (NAT) Terminology and

Considerations, RFC 2663, Aug. 1999. doi: 10 . 17487 / RFC2663. [Online]. Available:

https://rfc-editor.org/rfc/rfc2663.txt.

71

https://doi.org/10.17487/RFC4271
https://rfc-editor.org/rfc/rfc4271.txt
https://rfc-editor.org/rfc/rfc4271.txt
https://www.iana.org/numbers
https://www.iana.org/numbers
https://commons.wikimedia.org/wiki/File:Regional_Internet_Registries_world_map.svg
https://commons.wikimedia.org/wiki/File:Regional_Internet_Registries_world_map.svg
https://commons.wikimedia.org/wiki/File:Regional_Internet_Registries_world_map.svg
https://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
https://www.iana.org/assignments/ipv4-address-space/ipv4-address-space.xhtml
https://www.ripe.net/publications/news/about-ripe-ncc-and-ripe/the-ripe-ncc-has-run-out-of-ipv4-addresses
https://www.ripe.net/publications/news/about-ripe-ncc-and-ripe/the-ripe-ncc-has-run-out-of-ipv4-addresses
https://www.arin.net/vault/announcements/2015/20150924.html
https://www.arin.net/vault/announcements/2015/20150924.html
https://afrinic.net/20200113-afrinic-enters-ipv4-exhaustion-phase-2
https://afrinic.net/20200113-afrinic-enters-ipv4-exhaustion-phase-2
https://www.lacnic.net/1039/2/lacnic/phases-of-ipv4-exhaustion
https://www.lacnic.net/1039/2/lacnic/phases-of-ipv4-exhaustion
https://www.apnic.net/manage-ip/ipv4-exhaustion/
https://doi.org/10.17487/RFC2663
https://rfc-editor.org/rfc/rfc2663.txt

REFERENCES

[64] R. E. Gilligan and E. Nordmark, Basic Transition Mechanisms for IPv6 Hosts and Routers,

RFC 4213, Oct. 2005. doi: 10 . 17487 / RFC4213. [Online]. Available: https : / / rfc -

editor.org/rfc/rfc4213.txt.

[65] D. Schinazi and T. Pauly, Happy Eyeballs Version 2: Better Connectivity Using Concur-

rency, RFC 8305, Dec. 2017. doi: 10.17487/RFC8305. [Online]. Available: https://rfc-

editor.org/rfc/rfc8305.txt.

[66] H. Nielsen, J. Mogul, L. M. Masinter, R. T. Fielding, J. Gettys, P. J. Leach, and T.

Berners-Lee, Hypertext Transfer Protocol � HTTP/1.1, RFC 2616, Jun. 1999. doi: 10.

17487/RFC2616. [Online]. Available: https://rfc-editor.org/rfc/rfc2616.txt.

[67] P. Matthews, I. van Beijnum, and M. Bagnulo, Stateful NAT64: Network Address and

Protocol Translation from IPv6 Clients to IPv4 Servers, RFC 6146, Apr. 2011. doi: 10.

17487/RFC6146. [Online]. Available: https://rfc-editor.org/rfc/rfc6146.txt.

[68] P. Matthews, A. Sullivan, I. van Beijnum, and M. Bagnulo, DNS64: DNS Extensions for

Network Address Translation from IPv6 Clients to IPv4 Servers, RFC 6147, Apr. 2011.

doi: 10.17487/RFC6147. [Online]. Available: https://rfc-editor.org/rfc/rfc6147.

txt.

[69] S. Rose, M. Larson, D. Massey, R. Austein, and R. Arends, DNS Security Introduction

and Requirements, RFC 4033, Mar. 2005. doi: 10.17487/RFC4033. [Online]. Available:

https://rfc-editor.org/rfc/rfc4033.txt.

[70] J. Linkova, Let's talk about IPv6 DNS64 & DNSSEC, Jun. 9, 2016. [Online]. Available:

https://blog.apnic.net/2016/06/09/lets-talk-ipv6-dns64-dnssec/ (visited on

08/27/2020).

[71] M. Mawatari, M. Kawashima, and C. Byrne, 464XLAT: Combination of Stateful and

Stateless Translation, RFC 6877, Apr. 2013. doi: 10.17487/RFC6877. [Online]. Available:

https://rfc-editor.org/rfc/rfc6877.txt.

[72] P. Stevens, Ipv6-only, RIPE NCC::Educa, Jun. 2020. [Online]. Available: https://www.

ripe.net/support/training/ripe-ncc-educa/presentations/pete-stevens-ipv6-

only.pdf.

[73] T. Co�een, IPv6 Address Planning: A Case-Study, 2017 North American IPv6 Summit,

Apr. 1, 2017. [Online]. Available: https://www.rmv6tf.org/wp-content/uploads/2017/

04/03-2017-NAv6TF-Summit_4-21-2017-min.pdf (visited on 08/27/2020).

[74] P. A. R. Ade et al., �Planck 2015 results - xiii. cosmological parameters,� Astronomy and

Astrophysics, vol. 594, pp. 1�63, Sep. 2016. doi: 10.1051/0004-6361/201525830.

[75] Asia Paci�c Network Information Centre, Network address translation, 2020. [Online].

Available: https://www.apnic.net/community/ipv6/network-address-translation/

(visited on 08/27/2020).

72

https://doi.org/10.17487/RFC4213
https://rfc-editor.org/rfc/rfc4213.txt
https://rfc-editor.org/rfc/rfc4213.txt
https://doi.org/10.17487/RFC8305
https://rfc-editor.org/rfc/rfc8305.txt
https://rfc-editor.org/rfc/rfc8305.txt
https://doi.org/10.17487/RFC2616
https://doi.org/10.17487/RFC2616
https://rfc-editor.org/rfc/rfc2616.txt
https://doi.org/10.17487/RFC6146
https://doi.org/10.17487/RFC6146
https://rfc-editor.org/rfc/rfc6146.txt
https://doi.org/10.17487/RFC6147
https://rfc-editor.org/rfc/rfc6147.txt
https://rfc-editor.org/rfc/rfc6147.txt
https://doi.org/10.17487/RFC4033
https://rfc-editor.org/rfc/rfc4033.txt
https://blog.apnic.net/2016/06/09/lets-talk-ipv6-dns64-dnssec/
https://doi.org/10.17487/RFC6877
https://rfc-editor.org/rfc/rfc6877.txt
https://www.ripe.net/support/training/ripe-ncc-educa/presentations/pete-stevens-ipv6-only.pdf
https://www.ripe.net/support/training/ripe-ncc-educa/presentations/pete-stevens-ipv6-only.pdf
https://www.ripe.net/support/training/ripe-ncc-educa/presentations/pete-stevens-ipv6-only.pdf
https://www.rmv6tf.org/wp-content/uploads/2017/04/03-2017-NAv6TF-Summit_4-21-2017-min.pdf
https://www.rmv6tf.org/wp-content/uploads/2017/04/03-2017-NAv6TF-Summit_4-21-2017-min.pdf
https://doi.org/10.1051/0004-6361/201525830
https://www.apnic.net/community/ipv6/network-address-translation/

REFERENCES

[76] V. McKillop, Microsoft IT: Journey to IPv6, 2017 North American IPv6 Summit, Mi-

crosoft IT, Apr. 1, 2017. [Online]. Available: https://www.rmv6tf.org/wp-content/

uploads/2017/04/02-MicrosoftIT_IPv6-NA-IPv6-Summit-2017_VMcKillop-min.pdf

(visited on 08/27/2020).

[77] Der Beauftragte der Bundesregierung für Informationstechnik, Architekturrichtlinie für

die IT des Bundes, Version 1.0 vom 31.07.2020, Jul. 2020. [Online]. Available: https:

//www.cio.bund.de/SharedDocs/Publikationen/DE/Architekturen-und-Standards/

architekturrichtlinie_it_bund_2020.pdf?__blob=publicationFile.

[78] A. Gustafsson, T. Lemon, and M. Stapp, A DNS Resource Record (RR) for Encoding

Dynamic Host Con�guration Protocol (DHCP) Information (DHCID RR), RFC 4701,

Oct. 2006. doi: 10.17487/RFC4701. [Online]. Available: https://rfc-editor.org/rfc/

rfc4701.txt.

[79] Y. Rekhter, B. Volz, and M. Stapp, The Dynamic Host Con�guration Protocol (DHCP)

Client Fully Quali�ed Domain Name (FQDN) Option, RFC 4702, Oct. 2006. doi: 10.

17487/RFC4702. [Online]. Available: https://rfc-editor.org/rfc/rfc4702.txt.

[80] B. Volz and M. Stapp, Resolution of Fully Quali�ed Domain Name (FQDN) Con�icts

among Dynamic Host Con�guration Protocol (DHCP) Clients, RFC 4703, Oct. 2006. doi:

10.17487/RFC4703. [Online]. Available: https://rfc-editor.org/rfc/rfc4703.txt.

[81] B. Volz, The Dynamic Host Con�guration Protocol for IPv6 (DHCPv6) Client Fully Qual-

i�ed Domain Name (FQDN) Option, RFC 4704, Oct. 2006. doi: 10.17487/RFC4704.

[Online]. Available: https://rfc-editor.org/rfc/rfc4704.txt.

[82] R. Droms and S. Alexander, DHCP Options and BOOTP Vendor Extensions, RFC 2132,

Mar. 1997. doi: 10.17487/RFC2132. [Online]. Available: https://rfc-editor.org/rfc/

rfc2132.txt.

[83] Opensource.org, The open source de�nition, Mar. 22, 2007. [Online]. Available: https:

//opensource.org/docs/osd (visited on 08/30/2020).

[84] A. Barberio, A. Denis, and P. Mazzini, Coredhcp, Fast, multithreaded, modular and ex-

tensible dhcp server written in go, commit a9aa31766d13f1169b98b8ce23ed632f344570c8,

Aug. 9, 2020. [Online]. Available: https://github.com/coredhcp/coredhcp (visited on

08/22/2020).

[85] A. Barberio, Dhcp, Dhcpv6 and dhcpv4 packet library, client and server written in go,

commit 2e1bf785d039de3fd451b63cfe937456b32e739c, Aug. 14, 2020. [Online]. Available:

https://github.com/insomniacslk/dhcp (visited on 08/22/2020).

[86] M. Layher, Dhcp6, Package dhcp6 implements a dhcpv6 server, as described in rfc 3315.

mit licensed. commit 2a67805d7d0b0bad6c1103058981afdea583b459, Mar. 11, 2019. [On-

line]. Available: https://github.com/mdlayher/dhcp6 (visited on 08/23/2020).

73

https://www.rmv6tf.org/wp-content/uploads/2017/04/02-MicrosoftIT_IPv6-NA-IPv6-Summit-2017_VMcKillop-min.pdf
https://www.rmv6tf.org/wp-content/uploads/2017/04/02-MicrosoftIT_IPv6-NA-IPv6-Summit-2017_VMcKillop-min.pdf
https://www.cio.bund.de/SharedDocs/Publikationen/DE/Architekturen-und-Standards/architekturrichtlinie_it_bund_2020.pdf?__blob=publicationFile
https://www.cio.bund.de/SharedDocs/Publikationen/DE/Architekturen-und-Standards/architekturrichtlinie_it_bund_2020.pdf?__blob=publicationFile
https://www.cio.bund.de/SharedDocs/Publikationen/DE/Architekturen-und-Standards/architekturrichtlinie_it_bund_2020.pdf?__blob=publicationFile
https://doi.org/10.17487/RFC4701
https://rfc-editor.org/rfc/rfc4701.txt
https://rfc-editor.org/rfc/rfc4701.txt
https://doi.org/10.17487/RFC4702
https://doi.org/10.17487/RFC4702
https://rfc-editor.org/rfc/rfc4702.txt
https://doi.org/10.17487/RFC4703
https://rfc-editor.org/rfc/rfc4703.txt
https://doi.org/10.17487/RFC4704
https://rfc-editor.org/rfc/rfc4704.txt
https://doi.org/10.17487/RFC2132
https://rfc-editor.org/rfc/rfc2132.txt
https://rfc-editor.org/rfc/rfc2132.txt
https://opensource.org/docs/osd
https://opensource.org/docs/osd
https://github.com/coredhcp/coredhcp
https://github.com/insomniacslk/dhcp
https://github.com/mdlayher/dhcp6

REFERENCES

[87] Facebook, Inc., Dhcplb, Dhcplb is facebook's implementation of a load balancer for dhcp,

dhcplb is Facebook's implementation of a load balancer for DHCP. commit 3b70e1c,

Jul. 18, 2020. [Online]. Available: https://github.com/facebookincubator/dhcplb

(visited on 08/23/2020).

[88] H. Wahl, Dhcpy6d, dhcpv6 made simple, 2020. [Online]. Available: https://dhcpy6d.ifw-

dresden.de/ (visited on 08/22/2020).

[89] T. Mrugalski, Dibbler � a portable dhcpv6 user's guide, 1.0.2RC1, Jul. 3, 2017. [On-

line]. Available: https://klub.com.pl/dhcpv6/doc/dibbler-user.pdf (visited on

08/23/2020).

[90] S. Kelley, Dnsmasq - network services for small networks. [Online]. Available: http :

//www.thekelleys.org.uk/dnsmasq/doc.html (visited on 08/22/2020).

[91] Internet Systems Consortium, Inc., ISC DHCP, ISC DHCP is enterprise grade, open

source solution for DHCP servers, relay agents, and clients, supports both IPv4 and

IPv6, and is suitable for use in high-volume and high-reliability applications. commit

26243975f0c0df85391d05a0c6b81cba56a656cd, Aug. 7, 2020. [Online]. Available: https:

//gitlab.isc.org/isc-projects/dhcp (visited on 08/22/2020).

[92] Jagornet Technologies LLC, Jagornet dhcp server, Open source dynamic host con�guration

protocol server for ipv4 (dhcpv4) and ipv6 (dhcpv6). 2017. [Online]. Available: http :

//www.jagornet.com/products/dhcp-server (visited on 08/23/2020).

[93] Internet Systems Consortium, Inc., Kea, Modern, open source DHCPv4 & DHCPv6 serve,

2020. [Online]. Available: https://www.isc.org/kea/ (visited on 08/22/2020).

[94] ��, Kea, Modern DHCP, Kea is an open source software system including DHCPv4,

DHCPv6 servers, Dynamic DNS daemon, REST API interface, MySQL, PostgreSQL and

Cassandra databases, RADIUS and NETCONF interfaces and related utilities., Nov. 26,

2018. [Online]. Available: https://kea.isc.org/ (visited on 08/13/2020).

[95] T. Mrugalski, Kea � modern dhcp server, May 11, 2017. [Online]. Available: https://

ripe74.ripe.net/wp-content/uploads/presentations/140-kea-ripe74-final.pdf

(visited on 08/22/2020).

[96] N. J. Kain, Ndhs, Dhcp4, dhcp6, and ipv6 router advertisement server. commit 0119bd4,

Feb. 9, 2018. [Online]. Available: https : / / github . com / niklata / ndhs (visited on

08/23/2020).

[97] Slashdot Media, Wide-dhcpv6, Jul. 23, 2015. [Online]. Available: https://sourceforge.

net/projects/wide-dhcpv6/ (visited on 08/23/2020).

[98] Internet Systems Consortium, Inc., Kea dhcp technical support, Key features of a kea

support subscription, version rev0720r2. [Online]. Available: https://www.isc.org/

docs/Kea-Support-Subscription.pdf (visited on 08/31/2020).

[99] Internet Systems Consortium, perfdhcp - DHCP benchmarking tool, revision fbcbc870,

2020. [Online]. Available: https://kea.readthedocs.io/en/latest/man/perfdhcp.8.

html (visited on 08/28/2020).

74

https://github.com/facebookincubator/dhcplb
https://dhcpy6d.ifw-dresden.de/
https://dhcpy6d.ifw-dresden.de/
https://klub.com.pl/dhcpv6/doc/dibbler-user.pdf
http://www.thekelleys.org.uk/dnsmasq/doc.html
http://www.thekelleys.org.uk/dnsmasq/doc.html
https://gitlab.isc.org/isc-projects/dhcp
https://gitlab.isc.org/isc-projects/dhcp
http://www.jagornet.com/products/dhcp-server
http://www.jagornet.com/products/dhcp-server
https://www.isc.org/kea/
https://kea.isc.org/
https://ripe74.ripe.net/wp-content/uploads/presentations/140-kea-ripe74-final.pdf
https://ripe74.ripe.net/wp-content/uploads/presentations/140-kea-ripe74-final.pdf
https://github.com/niklata/ndhs
https://sourceforge.net/projects/wide-dhcpv6/
https://sourceforge.net/projects/wide-dhcpv6/
https://www.isc.org/docs/Kea-Support-Subscription.pdf
https://www.isc.org/docs/Kea-Support-Subscription.pdf
https://kea.readthedocs.io/en/latest/man/perfdhcp.8.html
https://kea.readthedocs.io/en/latest/man/perfdhcp.8.html

REFERENCES

[100] 1&1 Group, DIM (DNS and IP Management), commit 2599a1f, Apr. 20, 2020. [Online].

Available: https://github.com/1and1/dim (visited on 08/10/2020).

[101] The PostgreSQL Global Development Group, PostgreSQL: The World's Most Advanced

Open Source Relational Database, 2020. [Online]. Available: https://www.postgresql.

org/ (visited on 08/11/2020).

[102] P. Mazzini, Extending DHCPLB: The path from load balancer to server, May 28, 2019.

[Online]. Available: https://engineering.fb.com/data- infrastructure/dhcplb-

server/ (visited on 08/12/2020).

[103] A. Failla, DHCPLB: An open source load balancer, Sep. 13, 2016. [Online]. Available:

https://engineering.fb.com/data-infrastructure/dhcplb-an-open-source-load-

balancer/ (visited on 08/12/2020).

[104] E. Green, Using isc kea dhcp in our data centers, Jul. 21, 2015. [Online]. Available: https:

//engineering.fb.com/core-data/using-isc-kea-dhcp-in-our-data-centers/

(visited on 08/12/2020).

[105] T. Mrugalski, W. Wencel, and V. Risk, Kea 1.8.0, aug 26th 2020, release notes, Aug. 26,

2020. [Online]. Available: https://gitlab.isc.org/isc- projects/kea/- /wikis/

release%20notes/release-notes-1.8.0 (visited on 08/28/2020).

[106] R. Droms and K. E. K. Jr., �DHCP Failover Protocol,� Internet Engineering Task Force,

Internet-Draft draft-ietf-dhc-failover-12, Mar. 2003, Work in Progress, 133 pp. [Online].

Available: https://datatracker.ietf.org/doc/html/draft-ietf-dhc-failover-12.

[107] S. Goldlust and M. Siodelski, Kea High Availability vs ISC DHCP Failover, Aug. 6, 2019.

[Online]. Available: https://kb.isc.org/docs/aa-01617 (visited on 08/13/2020).

[108] T. Mrugalski, High availability in kea 1.4.0 - design, Nov. 11, 2019. [Online]. Available:

https://gitlab.isc.org/isc-projects/kea/-/wikis/designs/High-Availability-

Design (visited on 08/13/2020).

[109] T. Mrugalski and K. Kinnear, DHCPv6 Failover Protocol, RFC 8156, Jun. 2017. doi:

10.17487/RFC8156. [Online]. Available: https://rfc-editor.org/rfc/rfc8156.txt.

[110] Internet Systems Consortium, Inc., Kea 1.8.0-git documentation, 16.15. ha: High avail-

ability, version Revision c8699245, 2020. [Online]. Available: https://kea.readthedocs.

io/en/kea-1.8.0/arm/hooks.html#ha-high-availability (visited on 08/30/2020).

[111] B. Volz, S. Gonczi, T. Lemon, and R. L. Stevens, DHC Load Balancing Algorithm, RFC

3074, Feb. 2001. doi: 10.17487/RFC3074. [Online]. Available: https://rfc-editor.org/

rfc/rfc3074.txt.

[112] J. Kempf, J. Arkko, B. Zill, and P. Nikander, SEcure Neighbor Discovery (SEND), RFC

3971, Mar. 2005. doi: 10.17487/RFC3971. [Online]. Available: https://rfc-editor.

org/rfc/rfc3971.txt.

[113] A. AlSa'deh and C. Meinel, �Secure neighbor discovery: Review, challenges, perspectives,

and recommendations,� ieee symposium on security and privacy, vol. 10, no. 4, pp. 26�34,

2012. doi: 10.1109/MSP.2012.27.

75

https://github.com/1and1/dim
https://www.postgresql.org/
https://www.postgresql.org/
https://engineering.fb.com/data-infrastructure/dhcplb-server/
https://engineering.fb.com/data-infrastructure/dhcplb-server/
https://engineering.fb.com/data-infrastructure/dhcplb-an-open-source-load-balancer/
https://engineering.fb.com/data-infrastructure/dhcplb-an-open-source-load-balancer/
https://engineering.fb.com/core-data/using-isc-kea-dhcp-in-our-data-centers/
https://engineering.fb.com/core-data/using-isc-kea-dhcp-in-our-data-centers/
https://gitlab.isc.org/isc-projects/kea/-/wikis/release%20notes/release-notes-1.8.0
https://gitlab.isc.org/isc-projects/kea/-/wikis/release%20notes/release-notes-1.8.0
https://datatracker.ietf.org/doc/html/draft-ietf-dhc-failover-12
https://kb.isc.org/docs/aa-01617
https://gitlab.isc.org/isc-projects/kea/-/wikis/designs/High-Availability-Design
https://gitlab.isc.org/isc-projects/kea/-/wikis/designs/High-Availability-Design
https://doi.org/10.17487/RFC8156
https://rfc-editor.org/rfc/rfc8156.txt
https://kea.readthedocs.io/en/kea-1.8.0/arm/hooks.html#ha-high-availability
https://kea.readthedocs.io/en/kea-1.8.0/arm/hooks.html#ha-high-availability
https://doi.org/10.17487/RFC3074
https://rfc-editor.org/rfc/rfc3074.txt
https://rfc-editor.org/rfc/rfc3074.txt
https://doi.org/10.17487/RFC3971
https://rfc-editor.org/rfc/rfc3971.txt
https://rfc-editor.org/rfc/rfc3971.txt
https://doi.org/10.1109/MSP.2012.27

REFERENCES

[114] J. J. Brzozowski, J.-F. Tremblay, J. Chen, and T. Mrugalski, DHCPv6 Redundancy De-

ployment Considerations, RFC 6853, Feb. 2013. doi: 10.17487/RFC6853. [Online]. Avail-

able: https://rfc-editor.org/rfc/rfc6853.txt.

[115] T. Mrugalski and K. Kinnear, DHCPv6 Failover Requirements, RFC 7031, Sep. 2013. doi:

10.17487/RFC7031. [Online]. Available: https://rfc-editor.org/rfc/rfc7031.txt.

[116] J. Jeong, IPv6 Host Con�guration of DNS Server Information Approaches, RFC 4339,

Feb. 2006. doi: 10.17487/RFC4339. [Online]. Available: https://rfc-editor.org/rfc/

rfc4339.txt.

[117] A. Durand, J. Ihren, and P. Savola, Operational Considerations and Issues with IPv6

DNS, RFC 4472, Apr. 2006. doi: 10.17487/RFC4472. [Online]. Available: https://rfc-

editor.org/rfc/rfc4472.txt.

76

https://doi.org/10.17487/RFC6853
https://rfc-editor.org/rfc/rfc6853.txt
https://doi.org/10.17487/RFC7031
https://rfc-editor.org/rfc/rfc7031.txt
https://doi.org/10.17487/RFC4339
https://rfc-editor.org/rfc/rfc4339.txt
https://rfc-editor.org/rfc/rfc4339.txt
https://doi.org/10.17487/RFC4472
https://rfc-editor.org/rfc/rfc4472.txt
https://rfc-editor.org/rfc/rfc4472.txt

	Introduction
	Practical Usecases Considered by This Thesis
	PXE-DHCP
	RMC-DHCP

	The Scope and Aim of This Thesis

	Background: How the Internet Works
	Layer 1 and 2: Ethernet
	Layer 3: IPv4
	Mapping IPv4 Addresses to Link-Layer Addresses
	Predecessors of DHCPv4
	DCHPv4

	Layer 3: IPv6
	Addresses and Prefixes
	Address Scopes
	Delivery Schemes: {Uni,Any,Multi,Broad}cast

	Layer 3: ICMPv6
	Neighbor Discovery Protocol (ND)
	Multicast Listener Discovery (MLD)

	Layer 4: UDP
	Overview of Configuration Mechanisms for IP Nodes
	Separation of Concerns in IPv6

	Stateless Address Auto Configuration (SLAAC)
	Generation of Link-Local Addresses
	Generation of Global Addresses
	DNS Configuration

	DHCPv6
	Relay Agents
	Client Identification and the Relationship Between IPv6 Addresses and Link-Layer Addresses
	DHCPv6 Messages
	Retransmission of DHCPv6 Messages
	Stateless vs Stateful DHCPv6
	Stateless DHCPv6
	Stateful DHCPv6
	Server-Triggered Client Reconfiguration

	Redundant Service Instances
	High Availability
	Loadbalancing
	Anycast Using BGP
	IPv6 Link-Scope Anycast

	Evaluation of a Migration to IPv6-only
	The Problem: IPv4 Address Exhaustion
	Mitigation: Network Address Translation (NAT)
	Service Differentiation on Upper Layer Protocols

	Connecting IPv6 Nodes With IPv4 Nodes
	What IPv6 Does Differently Than IPv4
	Solving the Address Exhaustion
	Abolishing NAT
	Other Improvements
	Conclusions

	Stateful DHCPv6 and Redundancy Issues
	Knowing That an Address Is Assigned
	Difficulties When Altering DNS Records
	DHCID RR
	Conclusions

	Difficulties When Querying DNS Records (Caching)
	Record-Changing Events
	Practical Relevance of RELEASE Messages
	DNS TTL recommendation

	Issues With Failovers and Synchronization
	Too Much Redundancy
	Refusing Client Messages
	Conclusions

	DHCPv6 Server Implementations Running on Linux
	Criteria for Selecting Implementations
	Open Source DHCPv6 Servers Running on Linux

	Configuration Service Architecture Evaluation
	Current DHCPv4 Architecture
	Management Service
	DHCP Server Configuration

	Related Work
	DHCPv6 Deployment at Facebook
	ISC High Availability Considerations

	Recommended Configuration Mechanism Architecture
	Configuration Mechanism for PXE-DHCP Nodes
	Configuration Mechanism for RMC-DHCP Nodes
	Routers and Relay Agents per Link
	State Synchronization and Message Distribution
	Monitoring

	Results, Discussion and Future Work
	Scope and Requirements
	Benefits of Migrating to IPv6
	Configuration Mechanisms for IPv6 Nodes
	Resilient Stateless Configuration
	Redundant Stateful DHCPv6 Servers
	Results of the DHCPv6 Server Implementation Evaluation
	The Proposed Service Architecture
	Discussion of Methodology And Future Work
	Theory and Practice
	Performance
	Security
	More Literature
	Economics
	Consistency

